Headway in Large-Eddy-Simulation within the SPH models

M. Antuono*, A. Di Mascio†, S. Marrone*, D.D. Meringolo* and A. Colagrossi*†

* Consiglio Nazionale delle Ricerche - Istituto di iNgegneria del Mare (CNR - INM)
 Via di Vallerano 139, 00128, Rome, Italy, e-mail: matteo.antuono@cnr.it
† Dipartimento di Ingegneria Industriale e dell’Informazione e di Economia (DIIIE)
 University of l’Aquila, Via Giovanni Gronchi 18, 67100, l’Aquila, Italy
* Ecole Centrale Nantes, LHEEA research dept. (ECN and CNRS), Nantes, France

ABSTRACT

In the present paper we show some preliminary results of a novel LES-SPH scheme that extends and generalizes the approach described in [1]. Differently from that work, the proposed scheme is based on the definition of a Quasi-Lagrangian Large-Eddy-Simulation model where a small velocity deviation is added to the actual fluid velocity. When the LES equations are rearranged in the SPH framework, the velocity deviation is modelled through the Particle Shifting Technique (PST), similarly to the δplus-SPH scheme derived in [2]. The use of the PST allows for regular particle distributions, reducing the numerical errors in the evaluation of the spatial differential operators. As a preliminary study of the proposed model, we consider the evolution of freely decaying turbulence in 2D. In particular we show that the present scheme predicts the correct tendencies for the direct and inverse energy cascades.

REFERENCES
