Spectral Element FNPF Simulations of a Heaving Point Absorber

Claes Eskilsson∗, Carlos Monteserin† and Allan P. Engsig-Karup†

∗ Department of Civil Engineering
 Aalborg University
 Thomas Manns Vej 23, DK-9220 Aalborg Ø, Denmark
 e-mail: cge@civil.aau.dk, web page: http://www.civil.aau.dk

† Department of Applied Mathematics and Computer Science
 Technical University of Denmark
 DK-2800 Kgs Lyngby, Denmark
 e-mail: apek@dtu.dk - Web page: http://www.compute.dtu.dk

ABSTRACT

We present a fully nonlinear potential flow (FNPF) model for simulation of wave-body interaction in three spatial dimensions (3D) and apply it to the case of an axi-symmetric point absorber. The FNPF model is discretized in space by a C0 spectral element method (SEM) using high-order prismatic - possibly curvilinear - elements. This SEM-FNPF model is stabilized following the work presented in [2] and the wave-body interaction is solved by the acceleration potential method [4]. Following the work of [3] the model is based on an Eulerian formulation and the direct discretization of the Laplace problem makes it straightforward to handle accurately floating bodies. The FNPF-SEM approach has been illustrated to have the potential to deliver a computationally efficient tool for wave-body interaction [3]. In this work we apply the model to the 2nd test case of the OES Task 10 project: a heaving point absorber made up of surface piercing body with a cylinder on top, and a conical frustum on the bottom. This case was experimentally investigated in [1]. We present computations of diffraction, radiation and decay tests as well as heave response in regular wave.

REFERENCES

