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This work is concerned with the solution of nonlinear problems using the Proper Gener-
alized Decomposition (PGD) method [1]. From the weighted residual form of some linear
model, PGD uses a Greedy algorithm to construct a reduced basis for the solution. Con-
sider for instance a d-dimensional problem, with d ∈ N+, and assume the solution admits a
separated representation. Then, the d-dimensional problem that has to be solved to com-
pute each basis function can be decoupled, in the best case, into a set of d 1-dimensional
problems. All of them are related one to another through some “coupling coefficients”
coming from a series of 1-dimensional integrals. Because solving 1-dimensional problems
is much less expensive than solving a single d-dimensional problem, PGD is not only seen
as a multilinear solver but also as a Model Order Reduction (MOR) method.

If a nonlinear problem wants to be addressed using PGD, a linearization scheme has to
be put on top of it, and thus PGD will solve a sequence of linearized equations until the
convergence is reached. Observe that:

1. Linearized equations involve, at some point, the evaluation of the nonlinear term.

2. Both the linearization scheme and the construction of the reduced basis are iterative
procedures taking place simultaneously.

Concerning the first issue, as in general no separated representation of the nonlinear term
is known, the d-dimensional problem cannot be easily decoupled into d 1-dimensional
problems. Or in other words, the “coupling coefficients” can only be obtained at the price
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of computing d-dimensional integrals. In consequence, the computational complexity is
not effectively reduced as it was in the linear case.

This work explores different alternatives to reduce the computational complexity of the
nonlinear term. In first place, interpolation techniques such as Empirical Interpolation
Method (EIM) [2], or its discrete counterpart (DEIM) [3], are considered. These methods
perform a sampling to construct a projection basis for the nonlinear term. Once this basis
is computed, the nonlinear term is interpolated using the “magic points” algorithm [4].
This method is well adapted to a posteriori MOR methods, but for a priori methods such
as PGD, the election of the projection basis is not evident [5]. For this reason, rather than
interpolation, this work proposes a technique that allows computing a separated approxi-
mation of the nonlinear term, and thus, offers an effective reduction of the computational
complexity.

From the second issue, it follows that the rank of the computed approximation is, in
general, subsidiary of the convergence of the nonlinear scheme. In particular, suppose
that the basis functions that solve the k-th linearization of the problem have already been
computed. If at the k-th iteration, the solution is still far from convergence, there is no
particular reason to think that the converged solution could be written in terms of those
basis functions. In consequence, depending on the manner the reduced basis is enriched
we might add terms unnecessarily just because at a given iteration of the nonlinear scheme
the solution is still far from convergence.

This work analyzes the impact of the nonlinear convergence on the rank of the computed
approximation, and proposes some alternatives to circunvent this dependency.

REFERENCES

[1] F. Chinesta, P. Lavedeze and E. Cueto. A short review in Model Order Reduction
based on Proper Generalized Decomposition. Arch. Comput. Methods Eng., Vol. 18,
395–404, 2011.

[2] M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera. An “empirical interpolation
method”: application to efficient reduced-basis discretization of partial differential
equations. C. R. Acad. Sci. Paris, Ser. I, Vol. 339, 667–672, 2004.

[3] S. Chaturantabut and D.C. Sorensen. Nonlinear model order reduction via discrete
empirical interpolation. SIAM J. Sci. Comput., Vol. 32, 2737–2764, 2010.

[4] Y. Maday, N.C. Nguyen, A.T. Patera and G.S.H. Pau. A general multipurpose inter-
polation procedure: the Magic Points. Communications on Pure and Applied Anal-
ysis, Vol. 8, 383–404, 2009.

[5] F. Chinesta, A. Leygue, F. Bordeu, J.V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A.
Ammar and A. Huerta. PGD-based computational vademecum for efficient design,
optimization and control. Arch. Comput. Methods Eng., Vol. 20, 31–59, 2013.

2


