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We present an efficient algorithm for simulation of deformable bodies interacting with
two-dimensional incompressible flows. By taking the curl of the Navier-Stokes equations
including penalization term [2], one obtains the penalized vorticity transport equation (1)
for two-dimensional flows,

∂tω + (u · ∇)ω = ν∇2ω + ∇× [η−1χ(uP − u)] (1)

where χ is the mask function covering the penalized zone (χ = 1) in which uP is imposed,
η is the porosity coefficient, velocity components are (u, v) = (∂yψ,−∂xψ) satisfying

∇
2ψ = −ω (2)

ψ being the stream function. The time integration of equation (1) is based on classical
fourth-order Runge-Kutta method. Spatial discretization is done via fourth-order compact
finite differences [1]. By using a uniform Cartesian grid we benefit the advantage of
a fourth-order direct solver for the solution of the Poisson equation (2) to ensure the
incompressibility constraint down to machine zero. For introducing a deformable body in
fluid flow an immersed boundary method is applied to the solution of the Navier-Stokes
equations as a forcing term. A Lagrangian structure grid with prescribed motion cover
the deformable body interacting with surrounding fluid due to hydrodynamic forces and
moment calculated on an Eulerian reference Cartesian grid. Deformation of the backbone
is imposed according to

y(x, t) = (ax2 + bx+ c) sin(2π(x/λ+ ft)) (3)
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See Fig. 1 as an example of penalization method and Fig. 2 for fish swimming in forward
gait. The results are compared with those of [3]. Validation of the developed code shows
the efficiency and expected accuracy of the algorithm for fish like swimming and also for
a variety of fluid/solid interaction problems.
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Figure 1: (left) Domain of the solution and the immersed body, Ω = Ωf ∪ Ωp. (right) Vorticity contours
for flow around cylinder at Re = 200.
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Figure 2: The snapshots of vorticity contours for backbone deformation according to Eq. (3) with
a = 0.16, b = −0.08, c = 0.2, λ = 0.5, f = 2, η = 10−3 and ν = 10−4 for surrounding fluid corresponds
to Re = 4000.
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