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Though most engineering problems in acoustics directly deal with the wave equation in its
irreducible form, in many situations it becomes interesting to consider it in mixed form [1],
so as to directly account for both, the acoustic pressure and the acoustic velocity fields. A
particular case is that of waves propagating in domains with moving boundaries. When
attempting a finite element solution to such problems, the mixed formulation naturally
allows to set the equations in an arbitrary Lagrangian-Eulerian (ALE) framework. This
results in the appearance of some extra terms involving the scalar product of the mesh
velocity and the gradient of the pressure and velocity fields. As known, the finite element
solution to the mixed wave equation needs to be stabilized so as to use equal interpolation
for the pressure and velocity fields. Following the lines in [1, 2], where algebraic and
orthogonal subgrid stabilization [3, 4] were used, in this work a stabilized finite element
method is proposed for the ALE wave equation in mixed form.

As an application, we face the problem of the numerical generation of diphthongs. Much
numerical work has recently been done with regard to static vocal tract acoustics i.e.,
generation of vowels and related phenomena (see e.g., [5, 6, 7, 8]), but little has been
reported on dynamic vocal tract acoustics, most efforts being placed to date in the sim-
ulation of phonation [9]. As a first step towards the generation of diphthongs, some 2D
simulations will be presented based on simplified vocal tract geometries [10], which can
be tuned to exhibit a 3D behavior [11].
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