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Nonintrusive sampling methods for uncertainty quantification are quite popular because
in this case well developed deterministic computational fluid dynamics (CFD) solvers can
be used for flow simulation. The drawback of these methods such as Monte Carlo simula-
tion or stochastic collocation is that they may become highly computationally intensive.
Especially for robust optimization with many uncertain input parameters this can be a
crucial issue.
In practice, this problem is often avoided by using a deterministic optimization first and
afterwards examining the result with an uncertainty quantification in order to check if the
result fulfills the given requirements for robustness. However, in this way not necessarily
the robust optimum is found.

We propose a combination of an adaptive stochastic collocation method on sparse grids
(ASCM) [1] and a sensitivity derivatives based first-order second moment method (FOSM)
[2] for uncertainty quantification. Together with a gradient-free Nelder-Mead optimizer
[3] and an incompressible CFD solver this forms a hybrid robust optimization scheme
which is able to find a robust optimum with less effort than a pure sample method.

The major difference between ASCM and FOSM is in the approximation of the mean J̄
and the variance σ2

J of the objective function J. Both expressions are needed in order to
solve the robust optimization problem minJ

(
J̄, σ2

J, φ, a
)
, where φ are the state variables

and a the uncertain input variables. The FOSM approximates these terms through
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J̄ = J(ā) σ2
J =

n∑
i=1

(
∂J

∂ai
σai

)2

, (1)

where ā are the mean values of a, σai is the standard deviation of the ith uncertain pa-
rameter and n is the number of uncertain parameters. The effort for these calculations
depends mainly on the estimation of the derivative and is nearly constant during an opti-
mization run. Since this is only a simple first order method there is no information about
the failure which obviously grows with n. In contrast, the ASCM uses an error estimation
in order to reach a given accuracy. This is done by the use of more collocation points.
This means that during an optimization process the accuracy is nearly constant but the
required effort can be higher.

The idea of the proposed hybrid method is that the less computationally intensive but less
accurate FOSM is used in the beginning of the optimization for uncertainty quantification
in order to get a first rough estimation of the optimum. As soon as the optimizer begins
to converge the method for the uncertainty quantification is switched to ASCM and the
optimizer starts from this point with adapted parameters to determine a more precise
(local) robust optimum. In this way only a few iterations of the expensive ACSM might
be needed to find the optimum.

In order to illustrate the advantages and disadvantages of the introduced hybrid robust
optimization framework, several numerical examples are presented and discussed. Based
on these results it can be seen that the required time to convergence can be reduced as
long as the number of uncertain parameters is not too large. Furthermore it is shown that
the quality of the uncertainty quantification depends on the chosen type of the derivative
computation.
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