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In recent years one can notice a significant development of the meshless methods for solving 

differential equations from various disciplines of science. These numerical techniques can 

approximate the domain of the problem with the use of scattered nodes. Therefore they can 

handle well with irregular domains as well as with problems defined in more than one 

dimension. Many formulations of meshless methods have been developed so far [1, 2]. 

Among them there is a method that uses radial basis functions in the pseudospectral mode 

(RBF-PS) to approximate the solution [2]. This formulation with a slight difference is also 

known as the global radial basis function-based differential quadrature method (RBF-DQ) [3] 

and may be considered as a special kind of generalized finite difference methods [4-6]. The 

RBF-PS as well as the RBF-DQ apply collocation technique and weighting coefficients 

determined with the use of radial functions to reduce a differential equation to the set of 

algebraic equations. Since only one discrete equation can be written for each node, the 

problem arises for higher order equation that possesses more than one boundary condition at a 

boundary.  

 

In the present paper the problem of the imposition of the multiple boundary conditions in the 

RBF-PS is considered. To overcome the mentioned inconvenience, Hermite type interpolation 

for the radial functions is applied in the framework of the method [7]. To this end, the 

differential operators corresponding to boundary conditions of considered problem are 

introduced at each boundary node as degrees of freedom. Under this assumption the extended 

interpolation formula for the sought function is written. With the use of this interpolant one 

can easily determine weighting coefficients for derivatives included in the differential 

equation and finally reduce the equation to the system of algebraic equations by the 

collocation technique. Due to the use of the extended interpolation function, the boundary 

conditions are conveniently involved into discretization process. Moreover, the approach 

presented facilitates the discretization process.  

 

In order to show the usefulness of the approach, the static analysis as well as the free vibration 

analysis of quadrangular plates have been carried out in the present work. Irregular shaped 

plates with various boundary conditions have been taken under consideration. To discretize 

the domain irregular grid node distributions have been applied. The results obtained have 

been compared with those computed by other numerical techniques. It has been found that 

regardless of the node distribution the method provides satisfying results. Therefore the 
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method has a potential to be an effective technique for analyzing constructions characterized 

by irregular shapes. Numerical experiments carried out in the work incline also to the 

conclusion that in the future work a special emphasis should be laid on a reasonable irregular 

node distribution – suitably diversified density of nodes in appropriate areas and soft 

transition between areas of high and low density.       
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