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When cast in a Bayesian setting, the solution to an inverse problem is given as a distribu-
tion over the space where the quantity of interest lives. When the quantity of interest is in
principle a field then the discretization is very high-dimensional. Formulating algorithms
which are defined in function space yields dimension-independent algorithms, which over-
come the so-called curse of dimensionality. These algorithms are still often too expensive
to implement in practice but can be effectively used offline and on toy-models in order to
benchmark the ability of inexpensive approximate alternatives to quantify uncertainty in
very high-dimensional problems. Inspired by the recent development of pCN and other
function-space samplers [1], and also the recent independent development of Riemann
manifold methods [2] and stochastic Newton methods [3], we propose a class of algo-
rithms [4, 5] which combine the benefits of both, yielding various dimension-independent
and likelihood-informed (DILI) MCMC sampling algorithms. These algorithms can be
effective at sampling from very high-dimensional posterior distributions.
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