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Experimental observations indicate that the mechanical behavior of micro and nano systems 

cannot be accurately simulated by using classical deformations theories. Analytical and 

numerical studies of nano and micro structures can be developed using atomic and molecular 

models or continuum models. Atomic models, although adequate for the nano scale, are 

complex and computational expensive whereas continuum models provide a much simpler 

approach. 

 

The modified couple stress theory has been mostly applied to beams and was previously used 

for the study of free vibrations analysis of micro plates and static deflection of Kirchhoff and 

Mindlin plates [1, 2]. The strain energy for an isotropic linearly elastic material in domain Ω 

is: 

 

   
 

  

            

 

where dV is the volume element, σ is the symmetric part of the Cauchy stress tensor, m is the 

deviatoric part of the couple stress tensor and χ is the symmetric curvature tensor. 

 

In the present paper, a modified couple stress theory [2] and a meshless method is used to 

determine the static bending solution of simply supported isotropic micro plate according to 

the first-order shear deformation plate theory. The meshless method with collocation is used 

to solve the resulting boundary value problem and the results are compared with Navier 

analytical solutions. 

 

Radial basis functions were used by Hardy for the interpolation of geographical scattered data 

and later used by Kansa for the solution of partial differential equations (PDEs), with a global 

collocation.  The global collocation proposed by Kansa considers a set of points distributed 

over a domain and boundary of the problem. Each point is connected, through a radial basis 

function, to all the remaining points of the nodal set. This global collocation generally 
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produces dense, unsymmetrical, ill-conditioned matrices, which in turn can produce poor 

results and instability in the solution. However, when properly used, the global collocation 

produces excellent results.  

    

As a result of the ill-conditioning, some authors proposed a radial basis function method with 

a local approach [3]. The idea is to use radial basis functions with a local collocation as in 

finite differences, reducing the number of connections (the so-called support) for each node 

(also called center), hence producing a sparse matrix. This local approach retains many of the 

advantages of the global collocation, yet reducing the conditioning of the matrix.  

 

Numerical Example 

A simply supported square plate of length a and thickness h = 17.6 × 10
−6

 under uniform load 

is considered.  The ratio length/thickness is constant a/h = 20. The value for shear correction 

factor Ks is taken to be 0.8. Material properties are E = 1.44 × 10
9
 and μ = 0.38. Numerical 

results for deflection are normalized as w = w/h; a = x/h. Results are compared with an 

analytical solution. Figure 1 shows the numerical and analytical solutions for displacement 

filed variables u, v, w, φx and φy . 
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