
11th. World Congress on Computational Mechanics (WCCM XI)
5th. European Conference on Computational Mechanics (ECCM V)

6th. European Conference on Computational Fluid Dynamics (ECFD VI)
July 20 - 25, 2014, Barcelona, Spain

LOAD BALANCING FOR MULTIPHYSICS

Rainald Löhner1 and Joseph D. Baum2

1 CFD Center, MS 6A2, SPACS, George Mason University
Fairfax, VA 22030-4444, USA, rlohner@gmu.edu, http://www.scs.gmu.edu/ rlohner

2Advanced Technology Group, Leidos,
McLean, VA 22020, USA, joseph.d.baum@leidos.com

Key words: Load Balancing, Multiphysics Problems, Parallel Computing.

Over the last decade it has become clear that the only way to higher CPU performance
(loosely speaking: more floating point operations per second [FLOPS]) is via massive
parallelism. This can be achieved (and is pursued) at the level of the chip (either via
many cores or via specialized hardware, e.g. GPUs), via a network of chips, or via a
combination of both approaches. In fact, most of the Top 500 supercomputers at present
use a combination of this kind to achieve outstanding performance.
For field solvers, which are commonly used for computational fluid and solid mechanics
as well as electromagnetics, the classic way to distribute work among many distributed
memory processors is via domain decomposition. Given that the work requirements are
proportional to the number of elements/points in a domain, the aim is to achieve sub-
domains of equal size while minimizing communication. As the communication between
processors is proportional to the surface points of each subdomain, the aim is to mini-
mize surface-to-volume ratios, which is achieved by keeping the domains as contiguous
(non-split) and ‘spherical’ as possible. Techniques commonly used for domain splitting
include the advancing front methods, coordinate- and moment- recursive bisection, and
space-filling curve subdivisions. With the possibility of computing larger problems, the
desire to compute physics of ever increasing complexity also emerged. Some current flow
applications include a traditional (i.e. unreacting) flow solver, chemical reactions, mov-
ing embedded or immersed bodies, particles, etc. A timestep for such an application
may proceed as follows: a) Identify the (new) position of embedded/immersed bodies,
obtaining the new boundary conditions/geometric parameters required; b) Advance the
chemical reactions one timestep, obtaining the source-terms for the flow solver; c) Update
the particles one timestep, obtaining the source-terms for the flow solver; d) Advance
the flowfield one timestep. The order of these operations is not mandatory and will vary
among field solvers. What is important, though, is that at the end of each of these steps
a synchronization among processors is required: the calculation can not proceed until all
processors have completed each step in turn. Therefore, for optimal performance the

load should be balanced in each step. This inherent requirement of all multiphysics



Rainald Löhner and Joseph D. Baum

solvers implies that, compared to simple field solvers (e.g. just flow), the potential for
load imbalances and suboptimal performance increases substantially.

An obvious way out of this potential dilemma is to load balance each of the components
separately. This approach has been pursued repeatedly but implies a large amount of
message passing, as all the different partitions required for the individual physics modules
have to communicate with each other.

The way pursued in the present effort is to partition the load into into m ·Np subdomains,
where Np is the number of available (MPI) processors and m is proportional to the number
of different multiphysics models (flow, chemical reactions, embedded surfaces, particles,
etc.) used in each timestep to advance the solution. These m · Np subdomains are then
agglomerated into Np larger domains using a heap-based greedy algorithm, attempting to
equidistribute the work for each of the different multiphysics models as much as possible.

As an example, we consider a relatively long tube where a detonation occurs. As the blast
wave reaches the walls of the tube, particles are introduced into the flowfield. The number
of elements is of O(5 · 107), while the number of particles eventually reaches O(2 · 106).
The problem was run with 16 distributed memory (mpi) processes/domains, and 8 shared
memory cores (OpenMP) per domain, i.e. a total of 256 cores. For the present purpose,
the problem was run for 1000 steps, with a re-split using the method described above
every 100 steps. The splitting obtained at the end of the 1000 steps may be discerned in
Figures 2a-c. Note that there are many more domains than mpi-processes/domains, but
that, as expected, the basic moment-based recursive bisection has still produced ‘slices’
along the tube. The breakdown of times is approximately as follows: flow solver 60%,
particle update 30%, repartitioning and renumbering 10%. This implies that the parallel
repartioning does not lead to an excessive increase in CPU requirements while allowing
for a much better load balance.

Figure 1 Blast In Tube With Particles

2


