
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)

July 20–25, 2014, Barcelona, Spain

INTERACTIVE DEBUGGING OF AUTOMATICALLY
GENERATED NUMERICAL CODES

Jože Korelc

University of Ljubljana, Faculty of Civil and Geodetic Engineering,
Jamova cesta 2, 1000 Ljubljana, Slovenia,

E-mail: joze.korelc@fgg.uni-lj.si , web page: http://www3.fgg.uni-lj.si

Key words: Automatic coding, Symbolic approach, Finite elements, Debugging

Symbolic algebra systems such as Mathematica are general and very powerful tools for the
manipulation of formulae and for performing various mathematical operations by com-
puter. However, in the case of complex numerical models, direct use of these systems is
not possible. Two reasons are responsible for this fact: a) during the development stage
the symbolic derivation of formulae leads to uncontrollable growth of expressions and con-
sequently redundant operations and inefficient programs, b) for numerical implementation
computer algebra systems can not keep up with the run-time efficiency of programming
languages like FORTRAN and C and by no means with highly problem oriented and
efficient numerical environments used for finite element (FE) analysis. However, large FE
systems can be awkward for the development and testing of new numerical procedures.
The basic tests which are performed on a single finite element or on a small patch of ele-
ments can be done most efficiently by using the general symbolic-numeric environments.
It is well known that many design flaws, such as element instabilities or poor convergence
properties, can be easily identified if we are able to investigate element quantities on a
symbolic level. In order to assess element performances under real conditions we have
to perform large scale tests using numerically efficient programming languages. In order
to meet all this demands in an optimal way, a hybrid system for multi-language and
multi-environment generation of numerical codes is needed.

The paper presents some aspects of interactive debugging and analyzing of automatically
generated numerical codes. An important question arises: how to understand the au-
tomatically generated formulas? The automatically generated code should not act like
a ”black” box. For example, after using the automatic differentiation tools we have no
insight in the actual structure of the derivatives. One my argue that this is not needed,
however if the finite element code are to be derived with the efficiency comparable with
the manually written codes then an efficient debugging procedures become a necessity.
The standard way in which symbolic tools work is to evaluate a single expression com-
pletely, which can be then analyzed and printed in a required format. If the problem is



Jože Korelc

complex with potentially hundreds of expressions and it includes loops and branching,
then more sophisticated procedures for analyzing and interactive run time debugging are
required. Additionally, when optimization of the derived numerical code is performed
simultaneously with the derivation of formulas, the explicit form of the expressions is
lost.

Some approaches which can help to overcome presented problems were implemented into
the Mathematica packages AceGen (www.fgg.uni-lj.si/symech) that is used for automatic
generation of numerical codes and AceFEM finite element environment (www.fgg.uni-
lj.si/symech). First, the AceGen extends the collections of forms in which Mathematica
can represent expressions with expression browser, where automatically generated auxil-
iary variables are represented as active areas (buttons) which can then be further explored.

During the simulation run time the current values of the auxiliary variables can be pre-
sented instead of the formulas. For an efficient interactive debugging it is important where
the debugging actually takes place. One possibility is to run simulation code under what-
ever debugger is provided for particular compiled language. However, this approach is
not applicable for automatically generated codes, since the structure of the automatically
generated codes is rather ”unreadable”, thus difficult to debug directly. The approach
where the generated code is not debugged directly, but we look at representation of the
expressions and their current values in Mathematica, is essential for debugging of auto-
matically generated codes. The procedure has been implemented in AceGen/AceFEM
system and will be presented on several examples.

2


