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The objective of the present paper is to desciilge tontinuum model of the properties of
tensegrity modules with the effect of self-stresduded. 3D tensegrity modules with similar
dimensions in each direction are considered. Thm td tensegrity was introduced by Fuller
(see [6] for historical details). There are sevatafinitions of this concept [4]. For the
purpose of this paper the tensegrity is definedaagin-joined system with a particular
configuration of cables and struts that form aicly indeterminate structure in a stable
equilibrium. Infinitesimal mechanism should exista tensegrity with equivalent self-stress
state. Major advantages of tensegrity are: largénes$s-to-mass ratio, deployability,
reliability and controllability [4,6].

The continuum model of tensegrity modules shoul&en@ossible to:

- Estimate properties of the module with typical defation modes (tension, shear),

- Evaluate the influence of self-stress for the dedideformation,

- Evaluate the influence of cabels and struts forptioperties of the module,

- Compare the elastic properties of typical tensggnibdules.

The above estimations can help to build complegédgrity based beam- plate or shell- like
structures ([5] for lattice models). The open peoblis how to connect the modules together.
Discrete models.

Discrete models of tensegrity modules are matheailhtidescribed with the use of the Finite

Element Method [7]. Strain energy is a quadratiomfoE] 9™ ™" :%qTKq of nodal

displacementsq with the global linear and geometric stiffness nmalk =K, +K; as a

kernel. The self-stress state of the module (prtopwal to the tension forc®) is represented
by the geometric stiffness matrix.

Continuum model.

Symmetric linear 3D elasticity theory is consider&tie strain energy can be expressed as

E Sty = 1 I ¢'EedV, wheree - is the strain vectoE — is the elasticity matrix.

\Y
It is assumed in the proposed concept that théensémr@ergy of not supported tensegrity is
equivalent to the strain energy of the sphere (i) — Fig. 1 — with constant strains.
To compare the energies and build the equivalerttixn& the nodal displacements are
expressed by the average mid-values of displacenaand their derivatives with the use of
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Tayor series expansion. Co-ordinates of nodaltp({mi [(Ra, [Ra, ER,} are expressed by
the radiuR with the incrementé&x =a,; [R,Ay = a, [R,Az=a, [R in Taylor series .

* Figure 1. Tensegrity and continuum.
Elasticity tensor can be expressed in Voight's folr= [E; | ij-1,2,...6. There are 21

independent co-efficients for anisotropy. One afheisymmetries of the tens& can be
expected with 13, 9, 6, 5, 3 or 2 independent ficiehts, respectivelu [1].

Examples

The proposed technique can be used for any tetgegnfiguration. Some typical modules
3 and 4 strut Slmplex Expanded and Truncated@ckan) are presented in Fig. 2.

Figure 2Typical tensegrity modules.

As an example, the coefficients recelved for 4tshimplex module are presented below
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Detailed discussion of the results for various égmnisy modules will be presented during the

Conference with some reccomendations for beamtedand shell-like tensegrity structures.
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