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Variational integrators (VI) provide a way to design structure-preserving time integrators
for problems whose dynamics are generated by a Hamiltonian. The idea is to obtain the
algorithm from discretizing Hamilton’s variational principle [1]. In this way, the computed
discrete trajectories are stationary points of a discrete action functional. As a result, the
discrete trajectories approximate the exact trajectories of the system, and preserve the
energy of the system for long times.

This abstract concentrates on extending the ideas of constructing (continuous) Galerkin
variational integrator in order to build higher order discontinuous Galerkin variational
integrators (DG-VI) for finite-dimensional systems. The resulting DG time integrators
should correspond to a family of symplectic-discontinuous Runge-Kutta methods. They
fall in the category of structure-preserving methods because (i) they (should be) are
symplectic, (ii) they (should) conserve the invariants associated to symmetries of the
Lagrangian and (iii) they (should) present an excellent long term energy behavior (due
to the existence of a shadow Hamiltonian).

More precisely, we consider a finite-dimensional system described by generalized coor-
dinates q belonging to an appropriate configuration manifold Q. We assume that the
dynamics of such a system is characterized by the Lagrangian function Lpq, 9qq which in
many cases may be obtained as the sum of the kinetic plus the potential energies.

Let q : r0, T s Ñ Rm, m P N, be the trajectory we look for. The Hamiltonian dynamics
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amounts to find the stationary point of the action integral,

Srqs :“

ż T

0

Lpq, 9qq dt,

where

Lpq, 9qq :“
1

2
9qM 9q ´ V pqq

The Euler-Lagrange equation is given by

M :q “ ´∇V pqq, (1)

The main part of this work is developing numerical approximations to (1) by defining an
extension of the time derivative, the DG derivative (DDG) [2],

DDGq :“
dhq

dt
` r pvqwq ,

where dh
dt

means differentiation within each time interval where q is continuous, and r is a
lifting operator on the jump of q at each time step tk (vqw “ q´k ´ q`k ). q has well-defined
values q˘k at all t˘k (nearby tk).

Then, the general expression of the discrete action integral Sd is given by

Sdpqq “

ż T

0

dt “
1

2

ż T

0

MpDDGqq
2 dt´

ż T

0

V pqq dt.

Considering a linear interpolation for q, the algorithm in the form of Hamiltonian dynam-
ics reads,

pk´ “ ´D1Ld

`

qk´, qk`, qpk`1q´, qpk`1q`,∆t
˘

,

pk` “ ´D2Ld

`

qk´, qk`, qpk`1q´, qpk`1q`,∆t
˘

,

ppk`1q´ “ D3Ld

`

qk´, qk`, qpk`1q´, qpk`1q`,∆t
˘

,

ppk`1q` “ D4Ld

`

qk´, qk`, qpk`1q´, qpk`1q`,∆t
˘

,

where Ld is the approximation of action integral, and pk˘ are the values of momentum at
all t˘k . To initiate the process, we provide the values for

q0´, q0`, p0´, and p0`.

The method can also be applied for higher orders with no restriction. The numerical
performance of the algorithm is examined through some examples.
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