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MFDM [1, 3, 5, 16, 17] is the oldest and one of the most effective Meshless Methods [4, 6, 7]. 

Its current outlines, including the basic MFDM procedure, its various extensions and selected 

applications, demonstrating power, generality and versatility of the method competitive to 

main contemporary solution methods are briefly considered here. The MFDM may be applied 

in all formulations (strong, weak, mixed) dealing with derivatives. In particular the 

global/local MLPG [7] formulation proved to be especially effective.  

The basic MFDM procedure consists of the following steps: 

 Generation of nodal clouds 

 Voronoi tessalation and Delaunay triangulation (in 2D) 

 Selection of MFD stars 

 Specification of degrees of freedom assumed 

 MWLS or equivalent approximation 

 MFD operators generation 

 Integration (for global and global/local approaches) 

 Generation of MFD equations (for both linear and/or nonlinear b.v.p) 

 MFD discretization of boundary conditions 

 Solution of discrete MFD equations and/or search for solution of a discrete 

optimization problem 

 Postprocessing of the final results 

 

Various MFDM extensions were developed, such as 

 Higher Order MFD approximation including: 

o Multipoint Meshless FD approach [10, 11] 

o Use of correction terms [2, 9] 

 MFD analysis of b.v. problems given in MLPG formulation [8] 

 Error analysis and the adaptive approach [2, 9] 

 Smoothing of experimentally measured data [12] 

 Various MFDM and FEM combinations [13] 

Presented are several examples selected out of the variety of MFDM applications. Beyond the 
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typical structural analysis 

 residual stresses in railroad rails and vehicle wheels [12, 14, 15] 

 inflatable pneumatic structures [12], and 

 experimental data smoothing [12] 

are discussed here.  

Altogether through years MFDM proved to be general, versatile, and effective solution 

method, competitive to the Boundary Element Method (BEM), other MMs and potentially 

also to FEM. Its further developments, and variety of applications are expected. 
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