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The Analysis of Variance (ANOVA) expansion is an elegant and very useful way to repre-
sent a high dimensional multivariate function f(x), for instance, when estimating the sen-
sitivity indices via variance-based approaches. For independent random inputs, ANOVA
from standard definition consists in a unique orthogonal decomposition of f(x). Each
component function provides its best approximation to f(x) in a least-square sense. From
computational point of view, standard orthogonal ANOVA can be very expensive when
encountering very high dimensional problems and complicated multivariate functions.
Indeed, the drawback of standard ANOVA consists in the need to compute the high-
dimensional integrals (often requiring Monte Carlo type sampling methods). Even the
zeroth-order component function requires a full-dimensional integration in the stochas-
tic space. Alternatively, anchored ANOVA decomposition [2, 1, 6, 5] gives an efficient
way for the numerical evaluation of component functions in ANOVA expansion. As a
consequence, the estimation of mean and variance become feasible for real engineering
problems. In particular, [5] presents some adaptive criteria as dimension reduction tech-
niques, which can be applied to problems with a very high number of stochastic variables.
One main drawback appears in such a decomposition: the accuracy of approximation is
found to be very sensitive to the choice of the “anchor point”. [4, 3] show that a bad
choice of the anchor point can lead to an unacceptable approximation error. This talk
analyzes the reason of this sensibility to anchor point, and proposes to use the covariance
decomposition of the variance that has the capability of evaluating very accurately the
output variance in the framework of anchored ANOVA. We then propose to employ the
covariance-based sensitivity indices to study the relative significance of independent input
variables. We then extend this technique to the general case with the aim of evaluating
high order statistical moments: skewness and kurtosis. In particular, we will show the
sensibility problem related to the anchor point can be explained and successfully avoided
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by the proposed strategy. Numerical experiments show that our approach provides con-
verged results for all moments when considering academic problems. On the other hand,
it generally gives more accurate results than classical method, when using truncated ap-
proximation for high dimensional problems. An engineering test case will be presented
which involves the computation of the radiative heat flux at a distance corresponding to
the stand-off distance for the ERC capsule.
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