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Computational modeling of rate independent plasticity has nowadays achieved significant
improvements, both in the proper formulation of the theoretical laws governing the in-
elastic behavior and in the definition of the numerical procedures for the integration of
the boundary value problem, see among others Simo and Hughes [1], Zienkiewicz Taylor
and Fox [2] and Taylor [3]. In the numerical integration of rate independent plasticity
problems the assumption of a linear kinematic hardening behavior is often adopted. This
assumption proves to be advantageous from the numerical point of view since it often
provides numerical algorithms characterized by computational efficiency and a symmetric
tangential stiffness matrix. Nevertheless, in the last decades in the literature it has been
outlined the necessity of adopting nonlinear kinematic hardening rules in order to prop-
erly model experiments on real materials, see e.g. Armstrong and Frederick [4], Chaboche
[5], Lubliner et al. [6]. This is especially true under cyclic loading conditions and when
simulating experiments on solid materials subject to loading unloading and reloading pro-
cesses, see for instance Auricchio and Taylor [7] and Chaboche [8]. However, the adoption
of nonlinear kinematic hardening rules for plasticity models is not a trivial task to be
accomplished in the computational procedures. In fact it poses a number of challenges if
a fast and robust computational solution is to be pursued. As a matter of fact the inves-
tigation of fast and robust integration methods for nonlinear kinematic hardening models
and complex loading conditions currently represents an active topic of research. At this
regard see for instance Auricchio and Taylor [7], Chaboche and Cailletaud [9], Hartmann
et al. [10], Dettmer and Reese [11], Nukala [12], Artioli et al. [13]. In the present article
an integration scheme is applied which preserves a quadratic rate of asymptotic conver-
gence in the simulation of plasticity models with nonlinear kinematic hardening laws. A
comparative analysis is made between the linear and the nonlinear kinematic hardening
assumption by selecting different types of material parameters. Some considerations are
presented regarding the applicability of linear and nonlinear kinematic hardening rules in
the computational simulation of material behavior. Finally, computational applications
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and numerical results are reported in order to illustrate the effectiveness of the algorithmic
procedure.
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