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Damage models are commonly used to predict the failure of brittle structures. However,
how such models relate to brittle fracture is still a generally open topic. We present recent
analytical and numerical results pertaining to the evolution of a general class of isotropic
damage models with a gradient term in the damage variable and an internal length ` [1–4]
and how they can relate to Griffith–like theories.

Our approach is phenomenological : instead of giving a microscopic interpretation of the
damage theory, we study the properties of quasi-static irreversible rate-independent evolu-
tions [7] based on two constitutive assumptions: (i) stress-softening, (ii) finite dissipation
at complete failure. With additional restriction on the class of models, one can recover the
existence of a non-vanishing elastic limit and link it to the fracture toughness through the
internal length. In the one-dimensional case, this analysis can be made rigorous: crack
nucleation is due to the loss of stability of homogenous solutions which, for sufficiently
long structures, takes place at the elastic limit. The response exhibits a snap-back toward
localized responses. The dissipated energy of the fully localized solution, seen as a regu-
larized representation of a crack, can be linked to the critical elastic energy release rate.

This framework extends seamlessly in 2D and 3D settings and naturally leads to a nu-
merical solution scheme based on the solution of incremental non-convex minimization
problems under irreversibility constraint on the damage variable. These problems are
solved using finite elements discretization in space including the displacement and dam-
age fields as nodal variables, and an alternate minimization strategy [3]. We illustrate
the capabilities of the proposed approach to predict the morphogenesis and propagation
of complex crack patterns with results obtained for a thermal shock problem [5, 6] (see
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Figure 1).
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Figure 1: Numerical results on thermal shock cracks. Left: Full scale 2D numerical simulation with (a)
Damage field from the numerical simulation (b) Experimental results from [8, FIG. 5(d)]. (c) Average
crack spacing d as a function of their depth a for (a) and (b). Right: Three-dimensional fracture pattern
color-coded by the distance from the bottom surface where the thermal shock is applied.
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