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Dušan Gabriel1, Ján Kopačka1, Jǐŕı Plešek1 and Radek Kolman1
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In dynamic transient analysis, recent comprehensive studies have shown that the penalty
method for the enforcement of contact constraints can be applied to both stiffness and
mass matrix simultaneously. The aim of this bipenalty method is to find the optimum
of the so-called critical penalty ratio (CPR) defined as the ratio of stiffness and mass
penalty parameters that does not affect the maximum eigenfrequency ωmax of a system
[1]. Hence, the critical time step ∆t is also preserved for conditionally stable integration
scheme because the linear stability theory establishes the upper bound of the time step
as ∆t ≤ 2/ωmax.

However, there are no stability theorems for contact-impact problems. In this case the
linear stability theory can be applied carefully. In practise, for example, the stability
may be preserved by checking the energy balance during a nonlinear computation. In
Reference [2] an upper bound for the stiffness penalty was derived. Furthermore, this
estimation was generalized for the bipenalty method in Reference [3], which is described
in more detail now.

Based on the solution of the eigenvalue problem of a simple dynamic system with two
degrees of freedom the upper bound of the stable Courant number for the bipenalty
method was obtained. The dependence of the Courant number Cr on the dimensionless
stiffness penalty βs is plotted in Figure, where the dimensionless penalty ratio r = βs/2βm

is employed as the parameter (βm is the dimensionless mass penalty). The curve for
r → ∞ (i.e. βm → 0) corresponds to the standard stiffness penalty method. It illustrates
the main disadvantages of the standard stiffness penalty method: the Courant number Cr

rapidly decrease with increasing dimensionless stiffness penalty βs. On the other hand, the
curve for r = 1 confirms the existence of the CPR, for which the stable time step remains
unchanged for an arbitrary value of the dimensionless stiffness penalty βs. In addition,
there are more curves in Figure for dimensionless penalty ratios r = 2, 4, 8, and 16. For
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each of them, there are limits of the Courant number for βs → ∞ on the right edge of the
picture.
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In this work, the bipenalty approach is applied to an explicit algorithm based on the pre-
discretization penalty formulation [4]. The attention is focused on the stability properties
of this algorithm using the derived upper bound of the stable Courant number. Several
numerical examples are presented including the longitudinal impact of two thick plates, for
which an analytical solution is available. In all the cases the superiority of the bipenalty
method over the standard penalty method is demonstrated.
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