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1 introduction

Boundary element methods (BEMs) are efficient numerical methods for electromagnetic
wave scattering problems. However, it is known that BEMs show bad accuracy for electro-
magnetic problems at low frequencies. This problem is called “low-frequency problem”
and various methods which remedy this problem were suggested[1, 2]. In this paper,
we will propose a new method which accurately solves electromagnetic wave scattering
problems at low frequencies by utilizing a Hdiv scalar product for discretisation.

2 formulation

We consider a scatterer with a simple domain Ω− ∈ R3 enclosed by a smooth boundary
Γ. Ω+ is denoted by R3\Ω−. We are interested in solving the following boundary value
problems:

∇×E = iωµ±H , ∇×H = −iωε±E in Ω±

m := E+ × n = E− × n, j := n×H+ = n×H− on Γ

subjecting to the raditation conditions for the scattering fields (Esca and Hsca), where E
and H are unknown electric and magnetic fields, ω is the frequency, ε± and µ± are the
permittivity and permeability of Ω± and the scatterd fields are defined by (Esca,Hsca) =
(E −Einc,H −H inc) with the incident waves denoted by Einc and H inc in the exterior
domain Ω+, respectively.

To solve this problem, we will use a BEM with the Poggio-Miller-Chang-Harrington-Wu-
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Tsai (PMCHWT) formulation:

(Ψ+
ij +Ψ−

ij)mj − iω(µ+Φ+
ij + µ−Φ−

ij)jj = Einc
i , (1)

iω(ε+Φ+
ij + ε−Φ−

ij)mj + (Ψ+
ij +Ψ−

ij)jj = −H inc
i , (2)

where

Ψkl = ekjl∂jG(x), Φkl =

(
δkl +

1

k2
∂k∂l

)
G(x).

Note that we use the summation convention to repeated indices in these formulae.

3 discretisation

We will utilise the Hdiv scalar product

(u,v)Hdiv(Γ) := (u,v)L2
T (Γ) + c(divSu, divSv)L2(Γ)

for discretising the boundary integral equations in (1) and (2), where c is a positive
constant. Discretised boundary integral equations with this scalar product are obtained
as follows:

(si, n× {(Ψ+ +Ψ−)m− iω(µ+Φ+ + µ−Φ−)j})L2
T (Γ) + c(divSsi, n · {iω(µ+Ψ+ + µ−Ψ−)j

− (k+2
Φ+ + k−2

Φ−)m})L2(Γ) = −(si, E
inc × n)L2

T (Γ) − iωµ+c(divSsi, n ·H inc)L2(Γ)

(3)

(si, n× {iω(ε+Φ+ + ε−Φ−)m+ (Ψ+ +Ψ−)j})L2
T (Γ) + c(divSsi, n · {−(k+2

Φ+ + k−2
Φ−)j

− iω(ε+Ψ+ + ε−Ψ−)m})L2(Γ) = −(si, n×H inc)L2
T (Γ) − iωε+c(divSsi, n ·Einc)L2(Γ)

(4)

where si is a testing function. Note that we have to use Buffa-Christiansen basis function
for si if we expand the unknown functions m and j with the RWG basis function since,
compared with the boundary integral equatoins in (1) and (2), the second elements of
the first terms in the left-hand sides of equations (3) and (4) have the term n×. Dis-
cretised integral equations in (3) and (4) naturally includes both tangential and normal
components of equations (1) and (2), thus, a solution obtained by solving these equations
is expected to be more accurate. We set the constant c as 1/ω so that the normal and
tangential components of equations (1) and (2) have similar amounts for small frequency
ω.
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