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The accurate and reliable numerical approximation of the hyperbolic wave equation is of
fundamental importance to the simulation of acoustic, electromagnetic and elastic wave
propagation phenomena. Here, we study the elastic wave equation

ρpxq Btvpx, tq ´∇ ¨ σpupx, tqq “ fpx, tq in Ωˆ I ,

ρpxq Btupx, tq ´ ρpxqvpx, tq “ 0 in Ωˆ I ,
(1)

written as velocity-displacement formulation and equipped with appropriate initial condi-
tions and boundary conditions, where we denote by v the velocity, by u the displacement,
by ρ the mass density, by f the body forces, by σ “ C : ε the stress and finally by ε
the strain. Elastic waves appear in the design of integrated structural health monitoring
systems for composites. For this, it is strictly necessary to understand phenomenologi-
cally and quantitatively wave propagation in layered fibre reinforced composites and the
influene of the geometrical and mechanical properties of the system structure. There-
fore, the ability to solve numerically the wave equation in three space dimensions is
particularly important from the point of view of physical realism.

Recently, variational space-time discretisation schemes were proposed and studied for
challenging problems, such as the nonstationary incompressible flow; cf. [3].

In this contribution we will focus on the presentation of variational time integration
methods from the variational space-time approach for the hyperbolic elastic wave equa-
tion. For the spatial discretisation a symmetric interior penalty discontinuous Galerkin
method for anisotropic media is used; cf. [2, 4].

Figure 1: Guided ultrasonic waves in carbon fibre composite.
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As common starting point, we choose the weak formulation of Eq. (1), yielding

ż

I

pρ Btv,wqΩ ` pσpuq, εpwqqΩ dt “

ż

I

pf ,wqΩ dt , @w P L2pI,V q ,
ż

I

pρ Btu,wqΩ ´ pρv,wqΩ dt “ 0 , @w P L2pI,V q ,

(2)

with V “ pH1pΓDqq
3 Ă pH1pΩqq3. We denote by p¨, ¨qΩ appropriate L2 inner products

in space. Next, we discretise the time interval I into N disjoint elements In “ ptn´1, tns.
Finally, we derive variational time integration methods by choosing boundary conditions
in time, numerical quadrature in time and the test function space. By choosing a dis-
continuous test space in time, we can rewrite the resulting finite element in time method
as time marching scheme over one or several elements In. Doing this, we can easily de-
rive numerous well known schemes, such as the second order in time Crank-Nicolson
scheme, which is equivalent to the unconditionally stable second order in time New-
mark scheme (cf. [5]), as well as various new higher order continuous and discontinuous
Galerkin schemes in time; cf. [1, 2].

From these classes of uniform Galerkin discretisations in space and time an approach
of fourth-order accuracy is analysed carefully. More precisely, we use a continuous
Petrov-Galerkin method of third order accuracy in time and apply an inexpensive post-
processing step, which makes the numerical solution continuously differentiable in time.
Further, the efficient solution of the resulting block-matrix system and inherently parallel
numerical simulation through domain partioning is adressed. The performance properties
of the schemes are illustrated by sophisticated and challenging numerical experiments
with complex wave propagation phenomena in heterogeneous and anisotropic media.
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