
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)

July 20–25, 2014, Barcelona, Spain

PARALLEL SIMULATION OF FLUID-STRUCTURE
INTERACTIONS WITH ACOUSTIC FLUIDS

Miriam Mehl1, Bernhard Gatzhammer2 and Benjamin Uekermann3

1 Institute for Parallel and Distributed Systems, Universität Stuttgart, Universitätsstraße 38,
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Whithin the last years, many great numerical achievements have fostered the simulation of
multi-physics scenarios using partitioned approaches treating the involved physical fields
with independent, established and trusted solvers that are glued together with a coupling
tool. Even for hard problems such as fluid-structure interactions with incompressible fluids
and lightweight and flexible structures, stable and fastly converging solvers have been
developed. Among the most efficient methods that come along with only a handful of fluid-
and structure solvers per implicitly coupled time step of a fluid-structure system, is the
interface quasi-Newton method presented, e.g., in [1] based on previous work in [2]. For the
simulation of fluid-structure interactions involving turbulent and acoustic fluids, we have
to apply these methods to systems with very high grid resolution that, thus, have to be
simulated on massively parallel supercomputing architectures. In this context, a drawback
of the commonly used coupling methods becomes evident: the iterations within a time
step typically are done in a staggered way, i.e., a fluid solve is followed by a structure solve
and so forth. Therefore, our overall scalability deteriorates if one of the solvers (typically
the structure solver) is much cheaper and can be executed only on a comparably small
number of cores. Changing the execution order requires the development and analysis
of new methods. For this purpose, we decomposed the approved interface quasi-Newton
method into its two parts, a fixed-point equation and a fixed-point equation solver. As the
fluid solver uses displacements and velocities as an input and computes forces exterted on
the structure as an output, whereas the structure solver takes these forces and computes
displacements and velocities, convergence of the iteration is achieved if the input of the
overall iteration equals the output 1. This corresponds to the fixed point equation (S-

1With this, we have fulfilled the two coupling conditoions for viscous fluids: equality of forces and
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FPE) S ◦ F (d) = d where S and F denote the structure and flow solver, d summarizes
displacements and velocities at the interface between fluid and structure. If we want to
execute both solvers simultaneously, we have two basic possibilities: use the same input-
output relation for both and translate the output difference into a correction of the input
or use different input-output relations for flow and structure solver auch that the output
of one solver becomes he input of the other as in the standard approachvshown above.
This corresponds to the two fixed-point equations

d+ S−1(d) − F (d) = d and
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where S−1 denotes a structure solver using displacements and velocities as an input and
yielding forces as an output. We call the first equation the parallel fixed-point equation
(P-FPE) and the second one the the vectorial fixed-point equation (V-FPE). As described
in [3], the P-FPE can not be solved with a simple fixed-point iteration. For the V-FPE,
it can be easily shown that a simple fixed-point iteration as a solver is equivalent to
two independent instances of fixed-point iterations for the original S-FPE which doubles
the work and, thus, prevents us from profiting from the increased parallelism. However,
we can combine both equations with an interface quasi-Newton approach executing a
fixed point iteration step x̃i = H(xi) for an equation x = H(x) followed by a quasi-
Newton step based on a least-squares solver minimizing the residual of the new iterate
xi+1 := x̃i +

∑i
j=1 αj∆x̃j with ∆x̃j := x̃j − x̃j−1 and

(αj)j=1,...,i := argmin

∥∥∥∥∥ri +
i∑

j=1

αj∆rj

∥∥∥∥∥ with ∆rj = H(xj) − xj −H(xj−1) + xj−1

under the assumption that H can be locally approximated by a linear mapping. With
this, both P-FPE and V-FPE can be solved with a number of iteration that is comparable
to that needed to solve the S-FPE. We demonstrate this for a collection of benchmark
examples and show scalability results for different spatial resolutions and different numbers
of processors. It turns out that the scalability is still limited by the non-simultaneous
execution of solver steps and coupling numerics which is the next issue to be solved.
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equality of displacements/velocities.
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