
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)

July 20–25, 2014, Barcelona, Spain

PERFORMANCE CONSIDERATIONS WHEN USING
INTEL R© XEON PHITM COPROCESSORS FOR UNSTEADY

DISCRETE ADJOINT CALCULATIONS

Jan C. Hückelheim1 and Jens-Dominik Müller2

1 Queen Mary, University of London,
Mile End Road, E1 4NS, London, UK

j.c.hueckelheim@qmul.ac.uk

2 Queen Mary, University of London,
Mile End Road, E1 4NS, London, UK

j.mueller@qmul.ac.uk

Key words: Adjoint, Shape Optimisation, Checkpointing, Intel XeonPhi, Roofline model

The discrete adjoint method is an established way of computing gradients of a function
with respect to its input variables. It is used e.g. in shape optimisation, where a cost
function such as lift or drag is optimised by tuning the design. The complexity of the
adjoint method is independent of the number of design variables, making it feasible even
for industrial-scale applications [1]. In spite of this, the computational cost and memory
requirements for gradient calculations are a challenge, especially in unsteady flow optimi-
sation. The use of parallel high performance computing is essential, and latest computing
technology can help making this method more affordable for the industry.

Vector-coprocessors like GPUs or the Intel R© Xeon PhiTM offer more computational power
per power consumption than traditional CPUs and are used increasingly in both academia
and industry for cost-effective large scale computations. With the latest revision, the
OpenMP 4.0 standard includes directives that allow offloading program parts to a copro-
cessor, i.e. transfer data to a GPU or Xeon PhiTM, run parts of the program there, and
copy back the results to the host CPU. This requires fewer code changes compared to
approaches like writing a CUDA kernel, while retaining most of the added performance
offered by the coprocessor[2].

The work is conducted within the About Flow project,
http://aboutflow.sems.qmul.ac.uk/
funded by the European Commission under FP7-PEOPLE-2012-ITN GA 317006.



Jan C. Hückelheim1 and Jens-Dominik Müller2

In our project, we use the new OpenMP directives to parallelise an incompressible un-
structured flow solver. The parallel code is reverse-differentiated using the automatic
differentiation tool Tapenade[3]. We study the impact of this process on the vector and
cache efficiency of the coprocessor. Furthermore, the memory limitations on the coproces-
sor require more frequent checkpointing with additional data transfer to the host device.

While not all of this can be done automatically by Tapenade, the additional checkpoint
transfers in forward and reverse sweeps being a particular problem similar to the ad-
ditional communication needed in source-transformed MPI-parallel code, we will use a
hand-optimised code to answer a few more general questions.

The computations that are required for unstructured meshes and sparse matrices are
usually memory bound, memory accesses are not aligned and the vectorisation that co-
processors rely on for their performance can hardly be used. Other groups have faced
performance issues with vector coprocessors even on structured meshes [4] and experi-
enced a speedup factor of only around 30%. Unstructured codes have an even lower
computational intensity and will thus most likely experience even lower speedups.

We will conduct a detailed performance analysis of our code using the roofline model.
This model allows us to compare the performance that our implementation achieves with
a theoretical limit that can be reached on a particular machine. We will show that the
speedup is not always promising even in the best case. This results in general results
about the usefulness of vector coprocessors in our application, and not only a report of
our experience so far.

Finally, we will point out alternatives to make use of the coprocessor, such as data check-
point compression on the Xeon Phi while the host CPU is working on the main CFD
computations. In this case, the coprocessor could be easily used in addition to the host
CPU, resulting in a more efficient use of the available resources.

REFERENCES

[1] M. B. Giles and N. A. Pierce. Adjoint equations in CFD: duality, boundary conditions
and solution behaviour . Oxford University Computing Laboratory, 1997.

[2] T. Cramer, D. Schmidl, M. Klemm and D. an Mey. Programming on Intel R©Xeon
PhiTMCoprocessors: An Early Performance Comparison. RWTH Aachen University,
2012.

[3] L. Hascoet and V. Pascual. The Tapenade Automatic Differentiation Tool: Principles,
Model, and Specification. ACM Transactions On Mathematical Software, 2013.

[4] G. Skinner, M. A. Heroux. Running MiniFE on Intel R© Xeon PhiTM Copro-
cessors . http://software.intel.com/en-us/articles/running-minife-on-intel-xeon-phi-
coprocessors

2


