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Plastic deformation in metallic materials is governed by the glide and interaction of 
dislocations. Microstructure, e.g. the presence of grain and phase boundaries, generally 
restricts the glide of dislocations and thus results in a harder material. In this study we aim to 
develop a deeper understanding of the effect of such heterogeneities in the material’s 
microstructure – and in particular of the interactions between dislocations associated with 
them – on the material’s macroscopically observed plastic response. 
We model the glide of dislocations in a single slip system by formulating continuum transport 
equations for the total dislocation density as well as the excess density – cf. the work of 
Groma and co-workers [1]. Short-range interactions between the dislocations are accounted 
for by interaction terms which depend on the gradients of these densities along the slip 
system. This results in nonstandard, nonlocal governing equations [2]. 
The microstructure which we consider is a periodic laminate of two phases. They have 
identical elastic properties, but different resistance against plastic deformation, which is 
modelled by a different drag resistance. An additional resistance against dislocation motion is 
introduced at the interface between the two phases, thus modelling the effect of a phase 
boundary. Dislocation glide is assumed to occur on a slip system which is perpendicular to the 
microstructure’s lamellae and this allows us to treat the problem as a one-dimensional initial-
boundary value problem. 
The governing equations are solved numerically by the finite element method. A typical result 
is shown in Figure 1. It illustrates how the pile-up of dislocations of a certain sign against the 
phase boundary between the two phases results in a significant hardening during the initial 
stages of plasticity. As a result, the steady-state flow stress exceeds the Taylor average of the 
response of the two individual phases – which normally acts as an upper bound. The harder 
response observed here is due to the combined effect of boundary layers (pile-ups) and a 
redistribution of dislocations between the soft and the hard phase. 
Studying the effect of parameter variations on the observed response allows us to develop a 
deeper understanding of the influence of the microstructure on the dislocation transport, and 
thus on the observed macroscopic response. Changing the period of the microstructure, i.e. the 
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grain size, for instance gives rise to a Hall–Petch type of size effect, which switches to an 
inverse size effect for extremely small grain sizes. 
 
 

 
Figure 1: Numerical solution of the dislocation transport problem for a two-phase 
material. Left: overall stress–strain response (marked ‘Transport’); right: 
evolution of the distributions of total, statistically stored and geometrically 
necessary dislocation densities. 
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