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Introduction

This work concerns a shape optimization problem, i.e. that of minimizing an objective
function J(Ω) of the domain variable Ω, in the context of computational fluid dynamics
(CFD). We investigate a twofold approach, consisting in a preliminary use of the so-called
SIMP (Solid Isotropic Material with Penalization) method, followed by an optimization
method relying on the shape derivative. The numerical scheme has been implemented
using FreeFem++[4] and involves a mesh adaptation stage to improve the boundary ap-
proximation as well as the numerical accuracy and efficiency of the method.

1 First stage: topology optimization

The first step is based on a classical SIMP formulation with a material distribution model
proposed by Khadra [3] and used first by Borrvall [2] in fluid optimization. A fictitious
solid domain is mimicked by using a Brinkmann penalization of the Stokes equation, a
heuristic based on the theory of porous media: a term αui is added to the Stokes equation
posed in each subdomain Ωi of the fixed computational domain Ω, which then reads:

−µ∆ui + α(ρ)ui = fi −∇p . (1)

The density function ρ is defined over the entire domain Ω, and takes the value ρ = 1
(resp. ρ = 0) on the fluid (resp. solid) part. The inverse permeability α is defined as a
function of the density ρ, and accounts for a penalization parameter.

In order to reduce the “losses” of the Stokes system, the optimization function Φ(~u, ρ) is
devised to minimize the power dissipation of the fluid. The Stokes problem (1) is endowed
with classical Dirichlet boundary conditions. This yields the optimization problem:
Find (u, p) solution to Problem (1) such that:

min
ρ

Φ(ui(ρ), ρ) =

∫
Ω

(
µ∇ui : e(ui) + α(ρ)||ui||2

)
dx,

to which a volume constraint is added.
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Figure 1: Optimization process with a maximum volume prescription of 0.85: Upper left: Initial shape
and boundary conditions. Upper right: Density result of SIMP optimization. Lower left: Resulting
domain corresponding to the ρ = 0.5 density isovalue. Lower right: final shape.

2 Second stage: shape optimization

The fluid domain boundary resulting from the previous stage is usually not very accurate
(as it corresponds to an average isovalue of a density function). Hence, a ‘geometric’
shape optimization procedure based on an objective function J(Ω0) of the fluid part Ω0

of the domain is carried out on an unstructured (adapted) mesh in order to improve its
description (see e.g. [1], Chap. 6): the analysis of the shape derivative of J makes it
possible to compute a descent direction for J from a given shape Ω0, as a vector field VΩ0 .

3 Results

The diffuser example (see [2]) is implemented to validate our approach (Fig. 1). The
SIMP optimization process yields a resulting shape that is then further optimized using
the shape derivative method. At completion, a smooth explicit boundary is obtained for
the optimal design with respect to the objective function.
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Springer, Heidelberg (2006).

[2] T. Borrvall and J. Petersson, “Topology optimization of fluids in stokes flow,” International
Journal for Numerical Methods in Engineering, vol. 41, pp. 77–107, 2003.

[3] K. Khadra, P. Angot, S. Parneix, and J.-P. Caltagirone, “Fictitious domain approach for
numerical modelling of navierstokes equations,” International Journal for Numerical Meth-
ods in Fluids, vol. 34, no. 8, pp. 651–684, 2000.

[4] O. Pironneau, F. Hecht, A. Le Hyaric, FreeFem++ version 2.15-1,
http://www.freefem.org/ff++/.

2


