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The remap phase in arbitrary Lagrangian-Eulerian (ALE) hydrodynamics involves the
transfer of field quantities defined on a post-Lagrangian mesh to some new mesh, usually
generated by a mesh optimization algorithm. This problem is often posed in terms of
transporting (or advecting) some state variable from the old mesh to the new mesh over
a fictitious time interval. It is imperative that this remap process be monotonic, i.e. not
generate any new extrema in the field variables. It is well known that the only linear
methods which are guaranteed to be monotonic for such problems are 1st order accurate;
however, much work has been done in developing non-linear methods which blend both
high and low (1st) order solutions to achieve monotonicity and preserve high order ac-
curacy when the field is sufficiently smooth [1]. Here, we consider a set of new methods
for enforcing monotonicity targeting high-order Discontinuous Galerkin (DG) methods
for advection equations in the context of high-order curvilinear ALE hydrodynamics. Us-
ing the general high-order finite element approach described in [2], we consider an ALE
formulation based on three phases:

• Lagrangian phase, solving the Euler equations on moving curvilinear mesh

• Mesh optimization phase, using harmonic or inverse-harmonic smoothing

• Remap phase, based on conservative and monotonic DG advection remap

Semi-discrete DG methods for advection equations can be formulated in terms of high-
order finite element “mass” and “advection” matrices. These formulations result in high-
order accuracy for sufficiently smooth fields, but produce non-monotonic results (spurious
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oscillations) for discontinuous fields. We present three non-linear approaches for modifying
both the mass and advection matrices from the remap phase to enforce monotonicity:

• Locally Scaled Diffusion (LSD): In this approach, we locally lump the mass
matrices and upwind the advection matrices using an iterative process and a local
“monotonicity measure.”

• Flux Corrected Transport (FCT): This is a high-order generalization of the
FCT methods of [1] which is modified to account for non-lumped mass matrices.

• Optimization Based Remap (OBR): In this approach, we apply an optimization
procedure to enforce monotonicity in the remapped fields, based on the work of [3].

For each approach, we describe the relevant theory and numerical algorithms and demon-
strate their effectiveness on standard multi-material ALE hydrodynamics benchmarks,
such as the triple-point ALE calculation from Figure 1.

Figure 1: Shock triple-point ALE calculation using Q4-Q3 curvilinear finite elements without any mono-
tonicity treatment (left), using locally scaled diffusion (middle) and using a high-order flux corrected
transport algorithm (right).
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