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When air displaces viscous fluid from simple confined geometries, e. g. cylindrical or
rectangular tubes, a single propagation mode results. In contrast, recent experiments
in more complex geometries (axially-uniform rectangular channels containing a centred
step-like occlusion, see Figure 1) have revealed coexisting families of both steady and
oscillatory propagating modes for an imposed steady driving flow rate. [1], see Figure 2.
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Figure 1: Schematic diagram of the channel geometry used in the experiments of [1]. The channel cross-
section, shown on the right, is independent of the axial coordinate x∗. The dimensional outer width and
height of the cross-section are W ∗ and H∗ respectively. The cross-section is occluded by an obstacle of
dimensional width w∗ and height h∗ placed on one of the long sides of the cross-section.

In order to understand the origin of these multiple solutions, we develop a depth-averaged
(two-dimensional) model of the system by extending the work of McLean & Saffman
[2] to include a smoothed version of the occlusion. The resulting equations are solved
numerically using the open-source finite element library oomph-lib (www.oomph-lib.org).
Once the problem is formulated, the library allows us to use a combination of continuation,
bifurcation tracking, linear stability and time simulation to investigate the behaviour of
the system.
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Figure 2: (Left) Experimental bifurcation diagram of possible propagation modes replotted from [1]. Q
is a dimensionless flow rate and U is the dimensionless propagation speed of the air finger. Oscillatory
propagation modes are indicated with a black circle. The step occupies half the channel height and its
fractional width is given by w = w∗/W ∗. (Right) Numerical bifurcation diagram of possible propagation
modes for an obstacle occupying 15% of the channel height and 25% of its width. Unstable solutions are
shown as dashed lines and the blue envelope represents the amplitude of stable oscillations.

The resulting Poisson-like equation for the fluid pressure is discretised with piecewise
quadratic triangular finite elements. We use a moving-mesh method, with the mesh
motion governed by treating it as an elastic solid. In order to prevent mesh deterioration
affecting the interface motion, we perform a complete mesh regeneration every few steps,
generating a new triangulation based on the previous discretisation of the boundary when
required by an estimate of the error within the fluid domain, deformation of the elements
themselves, or due to a poor discretisation of the interface.

We find that the reduced model can reproduce qualitatively all the finger propagation
modes observed experimentally, see Figure 2. We analyse the bifurcation structure of
the model and find that it is remarkably similar to a structure conjectured from the
experimental measurements. The spatially variable channel depth modifies McLean &
Saffman’s model by introducing: (i) a variable mobility coefficient within the fluid do-
main due to variations in viscous resistance of the channel; and (ii) a variable transverse
curvature term in the dynamic boundary condition that modifies the pressure jump over
the air-liquid interface. We use our model to examine the roles of these two distinct effects
and find that both contribute to the steady bifurcation structure, but that the transverse
curvature term is responsible for the distinctive oscillatory propagation modes.
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