CONTINUUM DISLOCATION MICROPLASTICITY MODELING OF SINGLE CRYSTALS

T. Böhlke¹, S. Wulfinghoff¹, E. Bayerschen¹ and S. $Forest^2$

 ¹ Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany, e-mail: {stephan.wulfinghoff, thomas.boehlke, eric.bayerschen}@kit.edu, url: www.itm.kit.edu/cm
² Mines ParisTech, Centre des Matériaux, CNRS UMR 7633 BP 87, 91003 Evry Cedex, France e-mail: samuel.forest@ensmp.fr, url: www.mines-paristech.fr

Key words: gradient plasticity, grain boundary, crystal plasticity, size effect, regularization, non-smooth defect energy

Modern continuum approaches for microplasticity applications try to fill the gap between size-independent plasticity models for macroscopic applications and microplasticity models based on discrete objects like ab-initio methods or discrete dislocation dynamics. The formulation of phenomenological strain gradient plasticity models is the most popular approach for continuum mechanical microplasticity theories.

Additionally, several dislocation density-based theories have emerged that account explicitly for dislocation transport and production. For example, the kinematical theory of Hochrainer *et al.* [1] averages the collective motion of three-dimensional discrete, connected and curved dislocation lines. As the theory is numerically expensive in three-dimensional multislip applications, a simplified version is considered.

In this framework, the dislocation velocity couples the dislocation field problem to the elasto-visco-plastic crystal plasticity framework via Orowan's equation. The kinemic coupling based on phenomenological hardening approaches like the Taylor-relation as well as plastic strain gradient contributions [2] is also discussed.

In addition, promising plastic strain gradient energy candidates are investigated [3]. In this context, the major objective is the identification of accurate defect energy functions. The characteristics of the energies are investigated by an example.

REFERENCES

 T. Hochrainer, M. Zaiser and P. Gumbsch, 2007. A three-dimensional continuum theory of dislocations: kinematics and mean field formulation. Philosophical Magazine 87, 1261–1282.

- [2] S. Wulfinghoff, E. Bayerschen, T., Böhlke, 2013. A gradient plasticity grain boundary yield theory. International Journal of Plasticity 51, 33–46.
- [3] S. Wulfinghoff, S. Forest, T., Böhlke, 2013. Logarithmic and Rank-One Defect Energies in Gradient Crystal Plasticity Analytical and Numerical 1d Solutions, submitted.