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In recent time, a class of numerical approaches known as meshless methods has attracted 

considerable attention due to its potential to overcome time-consuming mesh generation and 

element distortion problems associated with the finite element method. Despite the recent 

popularity of meshless methods in the scientific community, high numerical costs associated 

with the calculation of meshless approximation functions still represent serious obstacles. The 

mixed Meshless Local Petrov-Galerkin (MLPG) Method paradigm [1] represents an efficient 

remedy for these deficiencies, and has been successfully applied for solving certain 

demanding engineering problems [2]. 

 

In the present contribution, the MLPG formulation based on the mixed approach, which has 

been efficiently used for the analysis of homogeneous structures [1] is extended for the 

modeling of deformation responses of heterogeneous materials. Heterogeneous structures 

consist of various homogeneous subdomains which are discretized by grid points, where 

equilibrium equations may be imposed. Independent variables are approximated using 

meshless interpolation functions in such a way that each subdomain is treated as a separate 

problem according to [3]. The solution for the entire domain is then obtained by gluing the 

solutions for displacements and tractions along the interfaces of the subdomains by enforcing 

the corresponding continuity conditions. 

 

Here the collocation meshless method will be applied, which may be considered as a special 

case of the MLPG approach [4], where the Dirac delta function is employed as the test 

function. The linear elastic boundary value problem for each subdomain is discretized by 

using the independent interpolations of both displacements and stress components. The 

interpolating moving least squares (IMLS) approximation scheme [2] and the radial point 

interpolation method [5] will be applied. They possess the interpolation property at the nodes, 

which enables a simple enforcement of the essential boundary conditions (BCs). In order to 

derive the final closed system of discretized governing equations with the displacements as 

unknown variables, the nodal stress values are expressed in terms of the displacement 

components using the kinematic and constitutive relations analogous to the formulation in [2].  

The proposed mixed MLPG formulation is compared with the standard fully displacement 

(primal) formulation in the example considering homogeneous thick cantilever beam with the 

dimension of 24 4L H   , as shown in Figure 1. The geometry, discretization, and 

boundary conditions described by displacements xu , yu  and tractions xt , yt  are presented. 
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The material data are Young’s modulus 1E   and Poisson’s ratio 0.25  . The convergence 

study of both primal (PA) and mixed (MA) approaches employing the relative error ur  in the 

L2 norm of nodal displacements is shown in Figure 2. The nodal distance of the uniform grid 

is denoted by h. The meshless interpolation schemes using the second- and third-order basis 

(IMLS2 and IMLS3) are applied and compared.  

 
 

   

 Figure 1: Geometry and BCs of thick cantilever beam 

                    

     Figure 2: Results of convergence tests 

As evident, the mixed approach is superior to the primal formulation. Therefore, a more 

accurate and numerically efficient modeling of heterogeneous material is expected when the 

mixed meshless collocation formulation is used. The discretization of the heterogeneous 

cantilever beam, with geometry and boundary condition described above, consisting of two 

homogeneous subdomains  and   with different material data is shown in Figure 3. This 

example will be used as one of the benchmarks for testing the computational strategy which 

will be presented in the proposed contribution.  

 

 
Figure 3: Heterogeneous cantilever beam 
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