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This work deals with the numerical evaluation of thermoelastic damping (TED) in mi-
crostrucures. Being an intrinsic loss of energy, the TED mechanisms are hardly control-
lable. It follows that a thorough knowledge of the phenomena is required, especially for
the design of devices with an high quality factor.

Within an elastic continuum, the compression and stretching of the fibres arising from
a mechanical deformation result in thermal stresses. The mechanical behaviour itself is
related to the temperature distribution and therefore the modelling becomes a little bit
involved.

We focus on a microstrucure in which the main component is represented by an electrically-
actuated microbeam that are widely used in MEMS applications.

The mechanical equation, developed under the assumptions of the nonlinear Euler-Bernoulli
theory, presents two different kind of nonlinearities accounting for a second order axial
stretch and for the electric forcing term. The use of the strain gradient elasticity theory
permits us to take into account size-dependent phenomena in the microstructure; since
the formulation is based on the modified theory of [1], the equation is enriched with a
sixth-order differential term. Furthermore, we add the thermal phenomena to the formu-
lation of the non-classical mechanical problem; the thermoelastic material is assumed to
be homogeneous and isotropic, with constant material properties.

The thermo-mechanical behaviour, for the considered electrically-actuated microbeam
problem, is described by a system of two coupled partial differential equations. Indicat-
ing with w = w (x, t) and θ (x, z, t) the transversal deflection of the microbeam and its
temperature distribution respectively, the governing system in its dimensionless form is
given by:
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The proposed model make use of the work of [2] in which the classical thermoelasticity
(CTE), the Lord-Shulman theory (LS) and the Green-Lindsday theory (GL), are unified
by introducing some global parameters (see Table 1).

The microbeam is clamped at both edges, w = w′ = w′′ = 0 at x = 0, 1, and the clamped
supports are maintained at constant temperature. Moreover we consider adiabatic bound-
ary conditions on the beam surfaces under the assumption that the conduction of heat
within the beam is faster than the exchange of heat with the environment.
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Figure 1: TED as function of the relaxation times.

case model

t0 = t1 = t2 = 0 classical thermoelasticity

t1 = t2 = 0 Lord-Shulman model

t0 = 0 Green-Lindsay model

Table 1: Thermoelastic models summary. When
t0 = t1 = t2 = 0 the system reduces to the classical
coupled thermoelasticity. If t0 = 0 and t1 6= 0,t2 6= 0
we obtain the GL theory. Imposing t1 = t2 = 0 with
t0 6= 0 the LS model is obtained.

Comparisons between the classical theory and the generalized model are carried out using
numerical simulations. The preliminary results show how the TED mechanism is affected
by the relaxation times ti. It is shown in Figure 1 the decrement of the dimensionless
deflection as function of the relaxation times: using both the LS and GL models it can
be seen a larger energy dissipation phenomenon for specific values of ti. For low values of
ti the results coincide with the classical theory. Increasing t0, the two generalized model
lead to different behaviours; the amplitude of t1 influences the approach towards the char-
acteristic peak. The investigation enlightens how the LS and GL models, both based on
a hyperbolic energy equation, are structurally different.
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