IMPROVEMENT OF CHEAP APPROXIMATIONS BY A POST-PROCESSING/REDUCED BASIS RECTIFICATION METHOD

Yvon Maday¹, Olga Mula² and Benjamin Stamm³

¹ Laboratoire Jacques-Louis Lions (LJLL), UPMC Univ Paris 6, F-75005 Paris, France; and nstitut Universitaire de France; and Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA; maday@ann.jussieu.fr

² LJLL, UPMC Univ Paris 6, F-75005 Paris, France; and CEA Saclay, DEN/DANS/DM2S/SERMA/LLPR, 91191 Gif-Sur-Yvette CEDEX, France; olga.mula@gmail.com

³ LJLL, UPMC Univ Paris 6 and CNRS, F-75005 Paris, France; stamm@ann.jussieu.fr

Key words: Reduced basis method, reduced order modelling.

The aim of this communication is to shed light on a successful post-processing strategy first presented in [1] and then used in [2] in the framework of reduced basis simulation of PDE's. Some cheap and non-optimal reduced basis approximation is post-processed through some snapshots which allows to recover a very accurate approximation.

In a general framework, the main idea consists in the following: let \mathcal{X} be a Banach space and let F be a compact subset of \mathcal{X} of small Kolmogorov n-width (F can be, e.g., the set of solutions of a parameter dependent PDE as was the case in [1] and [2]). The goal is to accurately approximate any $f \in F$ by elements of a finite dimensional subspace $X_M \subset \mathcal{X}$ of small dimension M. Suppose that we have at our disposal two approximation operators:

• $\pi_M: \mathcal{X} \to X_M$ that provides a computationally expensive but accurate approximation of the elements of F, i.e. such that

$$\sup_{f \in F} ||f - \pi_M[f]||_{\mathcal{X}}$$

is small enough for the application under consideration,

• $\mathcal{J}_M: \mathcal{X} \to X_M$ that provides a cheap but inaccurate approximation of the elements of F, i.e. such that $\sup_{f \in F} ||f - \mathcal{J}_M[f]||_{\mathcal{X}}$ is not small enough for our standards.

The operators π_M and \mathcal{J}_M can be Galerkin-projections as in [1] (finite element Galerkin projection) or [2] (reduced basis Galerkin projection) but we emphasize that we are placing

ourselves in a much more general setting here. In this framework, we will discuss the hypothesis under which one can build from evaluations of \mathcal{J}_M a rectification operator $\tilde{\pi}_M$ that has a comparable accuracy of π_M in the sense that

$$\sup_{f \in F} ||f - \tilde{\pi}_M[f]||_{\mathcal{X}} \sim \sup_{f \in F} ||f - \pi_M[f]||_{\mathcal{X}},$$

but that circumvents the computational cost of π_M .

REFERENCES

- [1] Chakir R. and Maday Y. A two-grid finite-element/reduced basis scheme for the approximation of the solution of parametric dependent PDE. C. R. Acad. Sci. Paris, I 347:435–440, 2009.
- [2] H. Herrero, Y. Maday, and F. Pla. RB (Reduced basis) for RB (Rayleigh-Bénard). Computer Methods in Applied Mechanics and Engineering, 2013.