
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)

July 20–25, 2014, Barcelona, Spain

OPTIMIZING THE MEMORY ACCESS PERFORMANCE
OF FASTEST’S SIPSOL ROUTINE

Michael Burger1 and Christian Bischof1

1 TU Darmstadt, Mornewegstrasse 30, 64293 Darmstadt, www.sc.tu-darmstadt.de,
{michael.burger, christian.bischof}@sc.tu-darmstadt.de

Key words: Data Structures, Performance Optimization, Parallelization, Cache Opti-
mization

In this article the runtime behavior of the simulation software Fastest [FNB13] is inves-
tigated and its single core performance is optimized through a new cache-friendly data
layout. The main performance bottleneck of Fastest is the Sipsol subroutine, which im-
plements a ”‘Strongly Implicit Solver” and accounts for over 50% of the total instructions.
Fastest arranges the data in so called 3D diagonals, on the right side of figure 1 three
example 3D diagonals are visualized: Imagine a pyramid - 3D diagonals are equivalent to
a face, and subsequent 3D diagonals lie on top of each other. The blue diagonal covers the
green one and the red one covers the blue one. Sipsol updates the grid one 3D diagonal
at a time and all elements within a diagonal are independent of the others.

Figure 1: Projecting 3D diagonals to 2D arrays

Analyses we performed with Intel VTune Amplifier and Vampir show that memory access
cost dominates the runtime. As a consequence of transforming the element numbering in
the diagonals to spatial coordinates within Sipsol. memory is not accessed in a consecutive
manner. To address this issue, a new data structure is developed which on the one

Michael Burger and Christian Bischof

hand increases the speed, but on the other hand preserves the ability to parallelize the
calculations on the data grid executed within Sipsol. To that end, the 3D diagonals are
projected into quadratic, fixed size 2D grids. This process is indicated on the left side
of figure 1. Assuming that the dark blue item should be calculated, the pale elements in
the red and green neighbor-diagonals are required. The arrows indicate the elements that
will be needed in subsequent iterations. As figure 1 shows, all data for the update of the
element right to the dark blue element either has already been copied to cache or follows
directly after the last ones. The ratio between calculation and memory reads/writes is
improved significantly, and the performance doubles in many cases. Detailed results are
show in figure 2 where the yellow bar shows the performance of the original Sipsol, the
gray bar the performance of the new code. For an iteration count bigger than 50 the
overhead for creating the new data layout is negligible.

Figure 2: Performance results.

System configuration:
CPU: 2 x Intel Xeon E5-2670
RAM: 128 GB
OS: Ubuntu 11.04
Compiler: Intel ifort v. 13.2
Flags: - OX (full optimization)

-avx (vectorization)

Legend for figure
x-axis Total runtime in seconds

logarithmic scale
y-axis Count of inner iterations

Table 1: Test configuration

Finally, approaches to efficiently implement a shared-memory parallelization are proposed.
It is possible to compute all lines within a 2D grid in parallel, since all elements of a 3D
diagonal are independent from the other. Additional points which should be taken into
account to take most advantage of the new data layout are also presented, e.g. data
structure initialization and adjustment of the inner iteration count.

REFERENCES

[FNB13] FNB: Project Site for Fastest / Technische Universtiaet Darmstadt. 2013 (1).
– Forschungsbericht. – http://www.fnb.tu-darmstadt.de/forschung_fnb/

software_fnb/software_fnb.de.jsp

2

