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INTRODUCTION 
Numerous papers on dynamic or generalized thermoelastic problems in functionally graded material 
(FGM) solids as well as in nonhomogeneous solids have been published. Most of those, however, 
dealt with harmonic wave propagation behaviors and short-time responses to nonharmonic loadings. 
Long-time solutions to dynamic or generalized thermoelastic problems of FGM or nonhomogeneous 
solids subjected to nonharmonic loadings were obtained in a limited number of papers, but they only 
showed that monotonic or complicated stress oscillations were induced in the solids. 
In the present paper, a one-dimensional dynamic thermoelastic problem of an FGM infinite thin film 
subjected to a thermal shock loading is analyzed, when variations in material properties of the thin 
film are expressed as exponential functions of the space variable. Exact analytical solutions are 
obtained for two cases of variations in material properties. The time history of one stress is 
periodically monotonic and similar to it derived for a homogeneous thin film, whereas that of the other 
stress is unsteady and the amplitude changes considerably with time. The factor, which governs 
whether a stress oscillation is monotonic or unsteady, is also investigated. 
 
ANALYSIS 
Let us consider a one-dimensional dynamic thermoelastic problem in an FGM infinite thin film of the 
thickness  l , as shown in Fig. 1. It is assumed that the thin film is considered to be initially at the 
reference temperature, the top surface is suddenly exposed to the uniform temperature rise T

C
, and the 

bottom surface is kept at the reference temperature: 
  T = 0  at   t = 0 , 

 
T = T

c
 on   z = 0 ,   T = 0  on  z = l   (1) 

where T (z,t)  is the temperature change from the 
reference temperature and t  is time. The temperature 
field in the FGM thin film is governed by 
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where 
  
k(z)  is the thermal conductivity, 

  
C(z)  is the specific heat, and 

  
!(z)  is the density. 

It is assumed that the thin film is initially at rest and both surfaces are stress-free as follows: 
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where 
  
u

z
(z,t)  is the displacement and 
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(z,t)  is the stress. The constitutive equation is given by 
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where 

  
!(z)  and 

  
µ(z)  are Lamé’s constants and 

  
!(z)  is the coefficient of linear thermal expansion. 

The equation of motion with inertia is expressed as: 

Fig. 1 An FGM thin film 
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In order to obtain an exact analytical solution, variations in the material properties of the FGM thin 
film are assumed to be expressed as exponential functions of the space variable: 
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 are material properties at the top surface of the thin film and a , b , 

q , p  and  f  are nonhomogeneous parameters. 
The governing equations (2) and (5) are solved by applying the following transformations: 
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where !  is an arbitrary constant and  s  is the Laplace parameter.  
Assuming that 

  
b+q!a=2" , 

  
q! p=2" , 

  f =2! , and 
  
! ="a / 2# =" p / 2# , the solutions are given by 
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where 
  
I
!"

(# )  and 
  
K

!"
(# )  are modified Bessel’s functions, A , B , L , and M  are unknown 

coefficients to be determined from the boundary conditions,  C ,  D ,  F , and  G  are coefficients 
related to A  and B , 
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The inversions of Eqs. (8) and (9) have been obtained for the cases of ! = ±0.5 . 
 
NUMERICAL RESULTS 
Numerical calculations have been carried out for 
the following conditions. 

  

l = 10!8 m, "
0
= 2700kgm-3, k

0
= 155W m-1K-1,

C
0
= 964J kg-1K-1, #

0
= 23.4 $10!6 K-1,

(%
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) = (50.3, 25.9)$109 N m-2 , & l = 0.4

 

The time histories of stresses are illustrated in Figs. 
2 and 3, where the dimensionless quantities are 
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Figures 2 and 3 show that the stress oscillation is 
periodically monotonic for the case of ! = 0.5 , 
while it is unsteady for the case of  ! = "0.5 . The 
analytical and numerical results reveal that the 
mechanical impedance 

  
Z = {!(z)+2µ(z)}"(z)  is 

constant when ! = 0.5 , but it is a function of the 
space variable when ! = "0.5 . 
The same problem has been analyzed numerically 
by applying the method of characteristics. The 
results of the numerical solutions are found to be 
in excellent agreement with those of the analytical 
solutions. For a realistic case, the stress oscillation 
is also obtained for an FGM thin film composed of 
Y-TPZ and MgO. These results are omitted here. 

Fig. 2 Stress oscillation for case of 
 
! = 0.5  

Fig. 3 Stress oscillation for case of 
 
! = "0.5  


