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Computationally efficient rans calculations are necessary in the aerospace design pro-
cess [11], where a large number of simulations must be performed. Flow separation,
that often dominates complex practical flows, even at nominal operating conditions [3]
presents marked anisotropy [10] and strong hysteresis [4] phenomena which require ad-
vanced turbulence closures to achieve acceptable accuracy. Differential Reynolds-stress
models (rsms) which directly include several important mechanisms (anisotropy, convec-
tive history, streamline curvature, redistribution, Coriolis effects) in the exact equations
that are modelled are increasingly considered as a promising practical alternative [8] to
the 2-equation closures that have widely dominated rans cfd in the past two decades [2],
especially with the availability of efficient and robust low-diffusion slovers [1]. The paper
discusses the performance of the final evolution of a 7-equation rij − ε

∗ wall-normal-
free rsm [5], especially with reference to selected test-cases of the nasa Turbmodels
project [9], namely the 2-d naca4412 airfoil trailing-edge separation case and the 2-d
convex curvature boundary-layer validation case. The glvy rsm slightly improves a pre-
vious successfull model [6], especially in the reattachment region, and also has a different
apparent transition behaviour [7].
The success of both these models [5, 6] in predicting flows with large separation (Fig. 1) is
attributed to the particular functional dependence of the rapid redistribution isotropiza-
tion of production model coefficient [6, Fig. 4, p. 1837]. To further substantiate the
previous results [3, 5] we study two separated flow configurations that are part of the
nasa Turbmodels test cases [9], and discuss perspectives in differential Reynolds-stress
modelling.
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Figure 1: Comparison of computed and measured pressure coefficient Cp along the centerline sCL/d1
directions at three circumferential angles φEXP in the S-duct of Wellborn et al. [12], using three Reynolds-
stress models and a linear k − ε model (ReCL = 2.6 × 106, 2×106 points grid) with a zoom in the
experimental separated flow region between sCL/d1 = 2.02 and sCL/d1 = 4.13.
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