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An efficient low order shell formulation is presented for analyzing thermo-elastic effects
in shell structures made of Functionally Graded Materials (FGM), where material prop-
erties show an arbitrary continuous distribution. The discretization of the mid-surface
of a curved shell geometry of thickness h leads to possibly warped element geometries.
In case of non-symmetric variations of Young’s modulus E with respect to the geomet-
ric mid-plane (ẑ = 0), where ẑ denotes the thickness direction, the corresponding nodes
are projected to a mechanical neutral plane, where bending and membrane properties
decouple. The offset of this neutral plane from the geometrical mid-surface reads

z =
1∫ h/2

−h/2
E(ẑ)dẑ

∫ h/2

−h/2

E(ẑ)ẑdẑ. (1)

From this warped element configuration we extract a plane element configuration as dis-
cussed in [1] in order to derive a plate element independent from a membrane bending
element, where the frequently missing drilling rotations are included based on a recently
proposed functional [2]. The details of the corresponding element formulation is given in
[1] where effective elastic quantities are introduced. The effective moduli for membrane
and bending read

Em =
1

h

∫ h/2−z

−h/2−z

E(ẑ′)dẑ′ , Eb =
12

h3

∫ h/2−z

−h/2−z

E(ẑ′)ẑ′2dẑ′, (2)

while the shear correction factor is

αs =

 144

Ebh5

∫ h/2−z

−h/2−z

1

E(ẑ′)

[∫ h/2−z

ẑ′
E(ζ)ζdζ

]2

dẑ′

−1

. (3)

The weak one way coupling to introduce thermo-elastic effects is based on the virtual
work principle which reads in the absence of mechanical loads δΠ =

∫
(δε)T σdV = 0.



P.A. Fotiu, St. Kugler and J. Murin

x
y

z z

10L = 1w =

2h =

10 , 100ct Bth T= =

10 , 100cb Bbh T= = −

0( 0) 300T x T= = =

( ) 9 10E z z= − +

( ) 50 51k z z= + 4 40.9 10 10) 1(zα − −⋅ + ⋅=

Figure 1: FGM thermo-elastic fin

Here δ denotes the variation symbol, the strain field omitting the shear terms1 reads
ε = [εx̂x̂ εŷŷ ]

T while the corresponding stresses are σ = [σx̂x̂ σŷŷ ]
T . Introducing a thermo-

elastic constitutive equation for isotropic materials, i.e.[
σx̂x̂
σŷŷ

]
=

E(ẑ)

1− ν2

[
1 ν
ν 1

] [
εx̂x̂
εŷŷ

]
− E(ẑ)α(ẑ)∆T (ẑ)

1− ν

[
1
1

]
, (4)

with α(ẑ) referring to the thermal expansion coefficient and ∆T (ẑ) denoting temperature
elevations which may depend on the thickness coordinate. Introducing (4) into the virtual

work term gives
∫
(δε)T E(ẑ)

1−ν2

[
1 ν
ν 1

]
εdV −

∫
(δε)T E(ẑ)α(ẑ)∆T (ẑ)

1−ν

[
1
1

]
dV , where the left hand

side leads to the finite element formulation discussed in [1], while the right hand side refers
to internal forces and couples caused by thermal expansion. Those internal forces and

couples are proportional to f =
∫ h/2

−h/2
E(ẑ)α(ẑ)∆T (ẑ)

1−ν
dẑ and m =

∫ h/2

−h/2
ẑE(ẑ)α(ẑ)∆T (ẑ)

1−ν
dẑ, while

the integration with respect to the membrane directions can be evaluated analytically.
Consider a fin with a rectangular cross section made of a FGM with linear distributions
of all relevant properties according to Fig. 1. The fin is loaded with a mean temperature
at x = 0 while convection is applied on the top and bottom surface with corresponding
convection coefficients hct and hcb and fluid temperatures of TBt and TBb. A suitable pro-
cedure to calculate the temperature field is discussed in [3]. The evaluated displacements
at x = L are compared to an ANSYS continuum solution indicating good accuracy of the
proposed algorithm (ux = 0.0987 error: 1.5%; uz = −0.6782 error: 0.5%).
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1The shear terms may be omitted since temperature elevations cause only normal strains.
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