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Shell structures made of Functionally Graded Materials (FGM) or Multi - Layer -
Composites (MLC) show arbitrary continuous or discontinuous variations of material
properties. This work focuses on the efficient evaluation of temperature distributions in
such structures (see e.g. [1]). Consider a curved FGM or MLC shell geometry of thick-
ness h where the geometrical mid-surface is discretized with four noded shell elements.
We assume that the thermal conductivity k is element-wise constant in the membrane
directions x̂ - ŷ and varies arbitrary in transverse direction ẑ. A convection boundary
condition is applied on the bottom (b) and the top (t) surface of the shell structure, with
hct and hcb denoting the convection coefficients on the top and bottom surface, while TBt

and TBb refers to the corresponding fluid temperatures. It is a main issue of this paper
that the temperature field T (x̂, ŷ, ẑ) is evaluated using a decomposition according to

T (x̂, ŷ, ẑ) = T̄ (x̂, ŷ) + θ1(ẑ) = T̄ (x̂, ŷ)θ2(ẑ). (1)

There, T̄ (x̂, ŷ) denotes the mean temperature while θ1(ẑ) and θ2(ẑ) represent the unknown
temperature distribution in transverse direction. The solution strategy is iterative while
each iteration consist of two steps: Within the first step we evaluate the mean temperature
field T̄ (x̂, ŷ) = 1

h

∫
h
T (x̂, ŷ, ẑ) dẑ in membrane direction, while within the second step

the temperature distribution in transverse direction θ1(ẑ) and θ2(ẑ) based on a mean
temperature T̄ is estimated. An iterative procedure is required since the shell’s surface
temperatures T (ẑ = ±h

2
) defining convection are not known within the first step. The

framework to calculate the mean temperature field is not included here since it is rather
classical using a standard finite element approach. Once the mean temperature T̄ (x̂, ŷ) is
evaluated at every point of the shell’s structure, the temperature distribution with respect
to the thickness direction is calculated next. Thereby, we analyze a one-dimensional
problem in transverse direction with the strong form of

d

dẑ

(
k(x̂, ŷ, ẑ)

d

dẑ
θ1(ẑ)

)
+Kk(ẑ) = 0 , (2)
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Figure 1: Rectangular MLC fin
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2

− hct

(
T̄ (x̂, ŷ) + θ1(ẑ = −h

2
)− TBt

)
= 0 , (3)
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(
T̄ (x̂, ŷ) + θ1(ẑ = −h

2
)− TBb

)
= 0 , (4)∫

h

θ1(ẑ) dẑ = 0 . (5)

There, a crucial step is the introduction of Kk(ẑ) in (2) where K denotes a constant.
Only the inclusion of this term (missing in [1]) leads to accurate results. The problem (2)
- (5) is solved using a discretization with n linear 1D elements of length h

n
. In order to

show the good predictive quality of the proposed algorithm a rectangular MLC fin of Fig.
1 is analyzed. In Configuration 1 highly conductive layers are placed on the outside while
nearly isolating layers are around the mid-surface. In Configuration 2 the order of the
layers has changed, however, both configurations have the same mean value of thermal
conductivity. Fig. 1 shows a comparison of the present approach compared to continuum
solutions evaluated in ANSYS. All results indicate high accuracy.
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