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Abstract. A geometrically nonlinear beam model suitable for describing complex 3D
effects due to non-uniform warpings including non-standard in-plane distortions of the
cross-section is presented. Buckling analysis results are compared with reference solutions
obtained using the commercial code ABAQUS on the bases of a shell finite elements
discretization. The beam model is potentially extendible to the analysis of anisotropic
and heterogeneous material.

1 INTRODUCTION

The use of 3D beams and frames in composite materials or thin-walled profiles is con-
tinuously increasing in engineering practice, requiring appropriate analysis tools, capable
of accurately predicting complex 3D behaviours such as interlaminar stresses, section
distortions and non-standard coupling effects. 3D solid or shell based analyses are com-
putationally more expensive and the recourse to accurate 1D formulations, capable of
reproducing the essential aspects of the original solution is then preferable. This is the
case, for instance, of the generalized beam theory (GBT) initially proposed by Schardt
[1] for modeling thin walled isotropic profiles and notably improved in the last few years
principally by Camotim and coauthors (see [2, 3] among other works).

This work deals with the formulation of a geometrically nonlinear beam model suitable
for describing non-uniform warpings effects including non-standard in-plane distortions
of the cross-section and potentially to account in a natural way for other 3D effects. The
work is limited to isotropic material but the formulation is general and, in our opinion,
extendible to cases of beams with anisotropic and heterogeneous material. The basic idea
of the proposal is that of extending the generalized beam model presented in [4] (see also
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[5]) to the case of large displacements but small strains through the Implicit Corotational
Method (ICM) proposed in [6]. ICM extends the corotational description at the continuum
level by introducing a corotational reference system for each cross-section. In this system,
following a mixed approach, the linear stress tensor is shown to be a good approximation
of the Biot nonlinear one, while a quadratic approximation of the strain is easily obtained
from the symmetric and the skew-symmetric parts of the displacement gradient of the
parent linear solution. The two fields so defined are introduced in the Hellinger-Reissner
functional to describe the beam behaviour in terms of generalized static and kinematic
quantities only, while change of observer algebra is used to complete the framework. The
nonlinear model maintains all the information of its linear counterpart, but is objective
and accurate up to the required order. This feature makes it suitable to be used within
both a standard incremental iterative approach or FEM implementations of the Koiter
asymptotic method. Readers are referred to [7] for its first application to the Saint-Venant
(SV) and the Kirchhoff solutions for beams and plates, while in references [8, 9] an ex-
tension to homogeneous and isotropic beams subjected to variable shear/torsion warping
deformations is presented. The linear formulations used in [4, 5] have been proved to be
very effective for modeling beams made of isotropic and homogeneous material or by com-
posites, also when important warping effects including non-standard in-plane distortions
of the cross-section arise (see [4] in particular). These models are defined exploiting a
semi-analytical solution of the Cauchy continuum problem for beam-like bodies under the
usual SV loading conditions, based on an FEM discretization of the cross-section (see also
[10] for details). The stress field considered in this way is potentially fully 3D, allowing
the recovery of SV solution for standard materials (see [11] for instance) or to generalize it
to inhomogeneous and anisotropic cross-sections. Furthermore some additional relevant
strain modes (generalized warpings) of the cross-section can be defined in a coherent and
effective way. On the basis of this information, the 1D linear model is described in a
mixed format as required by the ICM framework. As in [11], the displacement field is
approximated in terms of a rigid section motion and other relevant generalized warping
modes independently amplified along the beam axial direction. The stress field instead
enriches that provided by the generalized SV solution through the contributions due to all
the generalized warping effects considered. A mixed finite element suitable for interpolat-
ing both the kinematic and static generalized unknowns is proposed. It is implemented
inside a Koiter-like asymptotic algorithm. Numerical results regarding the buckling loads
evaluation are shown and compared with reference solutions obtained on the bases of shell
finite elements which are more computationally expensive.

2 THE BEAM MODEL

2.1 The Linear Solution

Let us consider the beam as a Cauchy body referred to a fixed Cartesian frame with
origin O and basis vectors {e1, e2, e3}. Each material reference point is defined by a
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position vector X = x1e1 +x, x1 being a one–dimensional abscissa along the axis line or
support of length ` while x = x2e2 + x3e3 lies on the cross section or fiber Ω[x1].

The linear solution in terms of displacement is assumed in the form

ῡ[x1,x] = ῡo[x1] + Θ[x]T ϕ̄[x1] +Aω[x]µ[x1] (1)

where ῡo[x1] and ϕ̄[x1] are suitable mean values of the translation and rotation of the
section, Θ[·] = spin(·), while µ[x1] gives the variability, along the beam axis, of the most
important n generalized warping functions ω(i)[x] evaluated through the cross-section
analysis proposed in [4] and collected in the matrix

Aω[x] =
[
ω(1)[x], · · · , ω(n)[x]

]
. (2)

Let εL[x1] = ῡo,1 +Θ[e1]ϕ̄ and χL[x1] = ϕ̄,1 be the standard generalized strains.
Introducing vector ρL[x1] = {εL, χL, µ,1 , µ} and matrices

U 1[x] =
[
I, Θ[x]T , Aω, 0

]
, U 2[x] =

[
0, 0, 0, Aω,2

]
, U 3[x] =

[
0, 0, 0, Aω,3

]
the displacement gradient is

∇ῡ =
[
ῡ,1 ῡ,2 ῡ,3

]
, ῡ,k = U k[x]ρL[x1] (3)

Introducing s[x1,x] = {σ11, σ12, σ13} and r[x1,x] = {σ22, σ33, σ23}, the stress compo-
nents in σ[x1,x] = {s, r} are evaluated as

σ = Dσ[x]t[x1], (4)

where t[x1] = {N ,M,B,T } collects the resultant forces N =
∫

Ω
s and moments M =∫

Ω
Θ[x] s the n bimoments in B and bishears in T , while

Dσ[x] =
[
d(N1), ..., d(N3), d(M1), ..., d(M3), d(B1), ..., d(Bn), d(T1), ..., d(Tn)

]
with the 6 components of each vector d(α) explicitly defined in [4]. We only recall that
they depend on the n generalized warpings ω(i) and a central solution coincident with the
SV one for isotropic and homogeneous materials. They are defined by an eigenproblem
over the section which reduces to 8 linear systems with the same iteration matrix (see
also [10]) for the central part of the solution.

Finally, introducing the operator Dω = DAω with

D =

[
De

Dg

]
, De =


0 0 0
∂

∂x2

0 0

∂

∂x3

0 0

 , Dg =


0

∂

∂x2

0

0 0
∂

∂x3

0
∂

∂x3

∂

∂x2


bimoments and bishears are defined as B =

∫
Ω
AT
ωs and T =

∫
Ω
DT

ωσ.
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2.2 The extention to the nonlinear case

We introduce for each fiber a corotational observer defined by the mean translation
υo and rotation R[x1]. In this system the displacement gradient components are evalu-
ated using the linear solution (3), where ϕ̄ = 0. From now on the bar will denote the
corotational quantities.

In the following we will adopt the vector-like parametrization of the 3D rotations,
introduced by Rodrigues and largely used in finite element analysis. Generalized strains
εL and χL can then be related to displacements υo with respect to a fixed reference system
and the rotation vector ϕ using a standard change of observer algebra as

εL[x1] = R[ϕ]T (υ0,1 +e1)− e1, χL[x1] = Λ[ϕ]Tϕ,1 . (5)

where

R =
∞∑
k=0

Θ[ϕ]k

k!
= I+Θ[ϕ]+

1

2
Θ[ϕ]2+· · · , Λ =

∞∑
k=0

Θ[ϕ]k

(k + 1)!
= I+

1

2
Θ[ϕ]+

1

6
Θ[ϕ]2+· · · .

The warping parameters µ as the static part of the solution do not require any changes
of observer algebra.

With the same Voight notation used for stresses, Biot strains are collected in ε[x1,x] =
{e, g}, with e[x1,x] = {ε11, γ12, γ13} and g[x1,x] = {ε22, ε33, γ23}. Referring to [6] for
a deeper discussion, strains components in ε are evaluated in terms of the displacement
gradient as

εi = Li[x]ρL[x1] +
1

2
ρTL[x1]Bi[x]ρL[x1] (6)

where operators Li and Bi are defined introducing I ij = eie
T
j and matrices

Lij[x] =
1

2
(eTi U j+e

T
j U i), Bij[x] =

3

4
UT
i U j−

1

4

3∑
k=1

(UT
j IkiU k+UT

i IkjU k+UT
k I ijU k)

which allow us to write

εij = Lij[x]ρL[x1] +
1

2
ρTL[x1]Bij[x]ρL[x1].

We have then, for instance, L1 = L11, L2 = L12 +L21, B1 = B11, B2 = B12 +B21 and
so on.

The nonlinear beam model is derived as a Ritz-Galerkin approximation introducing
the static and kinematic fields previously evaluated in the Hellinger-Reissner functional

ΠHR ≡ W −Ψ− L
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where L is the contribution of the external work, W is the stress strain work and Ψ the
complementary energy contribution. Denoting as F the elastic compliance operator, we
have

Ψ =
1

2

∫
`

∫
Ω

σTFσ =
1

2

∫
`

tTHt, (7)

where H =
∫

Ω
DT

σFDσ is the cross-section flexibility matrix.
Finally, the stress strain work is defined as

W =

∫
`

∫
Ω

σTε =

∫
`

tT (ρL + ρQ[ρL,ρL]), (8)

where ρQ = {ρ(N1)
Q , ..., ρ

(N3)
Q , ρ

(M1)
Q , ..., ρ

(M3)
Q , ρ

(B1)
Q , ..., ρ

(Bn)
Q , ρ

(T1)
Q , ..., ρ

(Tn)
Q } with

ρ
(α)
Q =

1

2
ρTLΥ(α)ρL, Υ(α) =

6∑
i=1

∫
Ω

d
(α)
i Bi. (9)

3 THE BUCKLING ANALYSIS

In the following the buckling analysis is considered as the first step of a complete
asymptotic Koiter FE analysis, described in detail in [12, 13, 14, 15, 16].

We consider a slender hyperelastic structure subjected to conservative loads λp̂ linearly
increasing with the amplifier factor λ. The equilibrium is expressed by the virtual work
equation:

Φ′[u]δu− λp̂δu = 0, ∀ δu ∈ T (10)

where u ∈ U is the field of configuration variables, Φ[u] denotes the strain energy, T is
the tangent space of U at u and a prime is used for expressing the Fréchet derivative with
respect to u. We assume that U will be a linear manifold so that its tangent space T will
be independent from u.

From now on we consider a FEM interpolation so that symbol in bold will denote the
vector collecting displacements and the stress finite element parameters while the corre-
sponding continuous quantities will be denoted with symbols not in bold. The solution
algorithm for the buckling analysis requires, from a computational point of view, the
following steps

1. the fundamental path is described by means of the linear extrapolation uf [λ] = λû,
where the initial path tangent û is obtained as the solution of the linear vectorial
equation

K0 û = p̂, Φ′′0ûδu = δuTK0 û, ∀ δu ∈ T (11)

p̂ being the discrete load vector and K0 the stiffness matrix evaluated for λ = 0,
i.e. Φ′′0 = Φ′′[uf [λ = 0]];
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2. a cluster of buckling loads and modes {λi, v̇i}, i = 1 ...m, is obtained along uf [λ],
by exploiting the critical condition

K[λi] v̇i = 0, (12)

the tangent stiffness matrix K[λ] being defined by the equivalence uTi K[λ]uj =
Φ′′[λû]uiuj.

3.1 The tangent stiffness matrix

The element tangent stiffness matrix will be derived by using a linearization in the
origin of Eq.(12)

Φ′′[λû]uiuj ≈ (Φ′′0 + λΦ′′′0 û)uiuj, K[λ] v̇i ≈
(
K0 + λK̂0

)
v̇i = 0 (13)

where uk represents a generic variation of u and a subscript zero denotes quantity evalu-
ated for λ = 0.

Denoting as dk and tk a generic variation of d = {υo,1 , ϕ, ϕ,1 , µ, µ,s } and t, we
obtain

Φ′′[λû]uiuj ≈
∫
`

tTi ρ
′
L[dj] + tTj ρ

′
L[di]− tTi Htj + λt̂

T
ρ′′[di,dj] (14)

where ρ′L[di] = {ε′L[di], χ
′
L[di], µ,

′
s [di], µ

′[di]}, while, introducing G[t̂] =
∑

α t̂
(α)Υ(α),

ρ′′[di,dj] = ρ′′L[di,dj] + ρ′L[di]
TG[t̂]ρ′L[dj],

with ρ′′L[di,dj] = {ε′′L[di,dj], χ
′′
L[di,dj], 0, 0}. Note as in Eq. (14) displacement quan-

tities λd̂ have been neglected.
Defining V 2[a, b] = Θ[a]Θ[b] + Θ[b]Θ[a], we obtain form Eq. (5)

ε′L[di] = υoi,1 +Θ[e1]ϕi, ε′′L[dj,di] = −(Θ[ϕj]υoi,1 +Θ[ϕi]υoj,1 ) +
1

2
V 2[ϕi,ϕj]e1,

χ′L[di] = ϕi,1 , χ′′L[di,dj] = −1

2
(Θ[ϕj]ϕi,1 +Θ[ϕi]ϕj,1 ).

(15)
Introducing u[x1] = {t, d} and ue = {βe, qe} collecting all the finite element parame-

ters, the interpolation can be written as

u[x1] = Nu[x1]ue Nu =

[
N t[x1] ·
· N d[x1]

]
.

We can then define the tangent stiffnes matrix Ke[λ] as

Φ′′uiuj = uTeiKe[λ]uej, Ke[λ] =

∫
`

NT
uK[λ]Nu. (16)
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Introducing the identity matrix of order m Im, terms in

K[λ] =

[
−H Ktd

KT
td λKdd

]
are defined as

Ktd =


I3 Θ[e1] · · ·
· · I3 · ·
· · · · In
· · · In ·

 , Kdd[t̂] = K
(L)
dd [t̂] +K

(Q)
dd [t̂]

with

K
(L)
dd =


· −Θ[N̂ ] · · ·

Θ[N̂ ] 1
2
V 2[N̂ , e1] 1

2
Θ[M̂] · ·

· −1
2
Θ[M̂] · · ·

· · · · ·
· · · · ·

 , K
(Q)
dd = KT

tdG[t̂]Ktd.

We refer to [9] for the explicit expression of shape functions used to interpolate υo,s,
ϕ, N and M. Note as with respect to [9], cubic lagrangian polynomials are adopted
for the warping descriptors µ, while B and T are described through separate quadratic
interpolations. Finally integration of the quantities on the element can be easily performed
by means of a Gauss point numeric process.

4 NUMERICAL RESULTS

Let us consider the simply supported beam with channel section in Figure 1, already
proposed in [13]. The structure is subjected to an axial compression uniform over the
cross-section and to a system of two local forces at midspan, uniformly applied over the
channel wedges (we refer to [4] for the load equivalence on the beam).

l

x1

x3

x2

x3

x2

b
 =

 2
5

h = 75

t = 1.3

x1

E 

Figure 1: Simply supported beam with channel section

The analysis is performed considering a variable number of generalized warping modes
from 0 to 13 + 13 (13 with only in-plane displacement components and 13 with only that
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in the beam axial direction). The first 18 of these modes are depicted in Figures 2 and 3.
For the one-dimensional solution a mesh of 4 and 32 FEs is considered, respectively, for
the case of 0 additional warping modes and for the other cases.

Table 1 shows a comparison between values of the smallest 6 buckling loads obtained
with our proposal and those furnished by a shell modeling performed with the commercial
code ABAQUS using a mesh of (3 + 9 + 3) × 60 S8R FEs. In-plane generalized warpings
are prevented at the beam ends as for the torsional rotation and the lateral displacements
while the axial displacement u1 is prevented at only one side. The constraints used for
the shell model are the same as described in [13].

1 2 3

4 5 6

7 8 9

Figure 2: Simply supported beam with channel section: in-plane generalized warping modes

1 2 3

4 5 6

7 8 9

Figure 3: Simply supported beam with channel section: out-of-plane generalized warping modes

Figure 4 shows the buckling modes obtained (on the left) and those furnished by the
ABAQUS shell analysis (on the right). Note the capability of the general beam formulation
to accurately predict the local in-plane distortions.

Figures 5-7 report the significant warping parameters along the beam axis for the first
3 buckling modes. The localization of the µ-distribuitions is manifest in the central part
of the beam because of the presence of the vertical force for the local mode.

8



Alessandra Genoese, Andrea Genoese, Antonio Bilotta, Giovanni Garcea

modes 0 1 3 6 9 13 ABAQUS

λ1 437.23 1293.8 1293.9 1296.6 1295.0 1295.0 1269.5
λ2 472.62 1351.1 1331.9 1333.1 1327.7 1326.7 1291.4
λ3 499.73 3957.6 2525.0 2306.8 2056.1 1986.2 1949.1
λ4 542.43 5084.6 2573.4 2528.2 2065.8 1994.8 1961.8
λ5 559.43 8753.3 2714.3 2528.4 2225.1 2160.4 2089.1
λ6 636.11 11119 2737.2 2561.9 2228.7 2162.3 2096.4

Table 1: Simply supported beam with channel section: buckling loads

Figure 4: Simply supported beam with channel section: buckling modes
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Figure 5: Simply supported C-shaped beam under compression and flexural imperfection: in-plane (left)
and out-plane (right) µ distributions (most significant only) along the beam for the buckling mode 1.
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Figure 6: Simply supported C-shaped beam under compression and flexural imperfection: in-plane (left)
and out-plane (right) µ distributions (most significant only) along the beam for the buckling mode 2.
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Figure 7: Simply supported C-shaped beam under compression and flexural imperfection: in-plane (left)
and out-plane (right) µ distributions (most significant only) along the beam for the buckling mode 3.
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5 CONCLUSIONS

In this work, the Implicit Corotational technique is employed to recover a nonlinear
model for beams in space with variable warping effects including in-plane distortions of
the cross-section, subjected to small strains but large displacements and rotations.

The numerical experimentation performed regarding the buckling analysis demon-
strates the reliability and the accuracy of the formulation and its FEM reduction through
comparisons with 3D shell-models.
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