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Abstract. In this work, a modelling procedure was developed so that it should be applicable 

to the analysis of crack growth in materials with various microstructures under biaxial fatigue. 

In the modelling, microstructures of two different polycrystalline materials were modelled by 

using Voronoi-polygons. Then, the crack initiation was analysed as the slip plane separation 

in an individual grain, and the number of cycles required for the separation was calculated by 

using a dislocation pile-up model. In the crack propagation stage, the crack growth was 

analysed as a competition between the growth by crack linkage during crack initiation and 

propagation stages and the propagation of a dominant crack as a single crack.  

The simulated cracking morphologies and the resultant lives were compared with 

experimental results observed in biaxial fatigue tests, which had been conducted by using two 

titanium alloys having different microstructures. The comparison revealed that the simulated 

results almost correspond with experimental results. 

1 INTRODUCTION 

The majority of failures in structural or functional systems are caused by fatigue. So when 

we intend to design structural or functional systems with long term durability, fatigue 

experiments under various conditions are needed to ensure that fatigue does not occur in such 

systems. By considering difficulty in conducting experiments under various conditions, 

simulation procedures are required in order to adequately describe crack growth behaviour, 

which determines fatigue life.  

It is recognized that crack growth in low cycle fatigue is affected by two factors; i.e., 

material microstructure and stress state [1,2]. From this point of view, simulation procedures 

are developed so that they could describe influence of microstructure and biaxial stress state 

on crack growth [3-7]. It is still at issue, however, that previous models of material 

microstructure used in the simulation bring uniform grain-structures and do not properly 
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represent non-uniform microstructures as seen in real materials. 

In this work, an updated analytical procedure is developed based on previous model [8] so 

that it should be applicable to biaxial fatigue behaviour in materials with non-homogeneous 

microstructures. Modelling of microstructure in a polycrystalline material is especially 

improved in this investigation, and a microstructure is modelled by using Voronoi-polygons. 

Numerical simulations using the proposed model were conducted to investigate the 

microstructural effects on crack growth in materials with different microstructures under axial, 

torsional and combined axial-torsional loading modes. The simulated cracking morphologies 

and the resultant lives were compared with experimental results observed in biaxial fatigue 

tests, and the applicability of the proposed model was discussed. 

2 TWO-DIMENSIONAL MODELLING OF POLYCRYSTALLINE MATERIALS 

2.1 Materials to be modelled 

Materials to be analysed in this simulation are an (α+β) and a β titanium (Ti) alloy. The 

microstructures of each material are presented in Figure 1. The two Ti-alloys have the same 

chemical composition, i.e. 6.52 wt. % Al, 4.00 wt. % V, 0.18 wt. % O, 0.16 wt. % Fe, and 

other elements less than 0.01 wt. %. They have been produced by different heat-treatment and 

processing histories, so a remarkable difference in microstructure is observed between the two 

Ti-alloys. A quasi-isotropic microstructure is found in the β Ti-alloy, while grains in the (α+β) 

Ti-alloy are stretched in the axial direction. As for the (α+β) Ti-alloy, the average aspect ratio 

and the mean size of stretched α-grains, which were preferable sites for crack initiation, are 

approximately 2 and 8.5 μm, respectively. Contrarily, the mean grain-size in the β Ti-alloy is 

very huge, i.e. 400 μm. 

 

 
(a) (α+β) Ti-alloy                                                 (b) β Ti-alloy 

 

Figure 1: Microstructures of the simulated materials 

 

 
 

Figure 2: Dimensions of the notched specimens 
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Specimens are of a solid cylindrical type with a circumferential blunt notch of root radius 

R = 6 mm, as shown in Figure 2. The fatigue behaviour of these materials has been 

investigated experimentally in other works [9]. 

2.2 Modelling of microstructures by using Voronoi-polygons 

In this work, a solid cylindrical specimen is considered, and a cylindrical coordinate 

system r––z is introduced, where r–, – and z–axes coincide respectively with radial, 

circumferential and axial directions in the specimen. 

The microstructure on the surface of a cylindrical specimen is modelled as a two-

dimensional area by using Voronoi-polygons. A Voronoi diagram is a kind of decomposition 

of a metric space, which is determined by distances to a specified discrete set of points in the 

space [10]. It is also known that an aggregate of convex hexagons is obtained as Voronoi-

polygons in a two-dimensional area. The merit in adopting Voronoi-polygons for 

microstructure of polycrystalline material is that a modelling of microstructure is possible 

under a simple algorithm in numerical analysis.  

A curved surface on solid cylindrical specimen, where fatigue cracks grow, is developed 

into a flat surface. This implies that the circumferential direction (–direction) of a specimen 

is developed onto the horizontal direction in the two-dimensional surface when the specimen 

axis (z–direction) is set to coincide with the vertical direction. The size of the aforementioned 

two-dimensional area may be changed depending on material microstructure, specimen 

geometry under consideration and convenience of conducting analysis. 

The number of polygons in the analysed area is determined so that the resultant mean 

grain-size should approximately equal the size measured in experiment. The polygon-number 

for a material consisting of one phase is determined by the just-above mentioned procedure. 

On the other hand, in a material having the second phase, Voronoi-polygons are randomly 

selected among all Voronoi-polygons so that an area-ratio of selected polygons occupying in 

the analysed area could coincide with the phase composition observed in the material 

microstructure. When a material to be modelled has grains stretched in the axial direction as 

seen in (α+β) Ti-alloy and stretched grains have the average aspect ratio λ, the axial length of 

an area modelled by ordinary Voronoi-polygons will be multiplied by λ.  

 

 
(a) (α+β) Ti-alloy                                                (b) β Ti-alloy 

 

Figure 3: Modelled microstructures 
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Polygons formed as mentioned above are hereafter called grains, which constitute a 

polycrystalline material. Figure 3 presents examples of modeled microstructures, which are 

depicted by modelling two different microstructures. Grains with black-points in themselves 

in the (α+β) Ti-alloy represent β grains. 

3 MODELLING FOR FATIGUE CRACK GROWTH 

A competition model for crack growth established by the authors [3,4] is also applied in 

this simulation. The model postulates that the cracking morphology and the fatigue failure life 

are determined as a result of competition between the growth by crack coalescence and the 

propagation of a dominant crack as a single crack. The competition implies that the dominant 

crack growth will be governed by the faster growth mode. Figure 4 presents the outline of the 

present simulation. The analytical procedure for each mode is summarized as follows. 

 

 
 

Figure 4: Flowchart of the analytical procedure 

 

 
 

Figure 5: Coordinate systems related with slip plane and angle of slip-band 
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3.1 Crack initiation analysis 

In the crack initiation analysis, the r–θ–z coordinate system is employed as depicted in 

Figure 5. The z–axis is set to be parallel to the axial direction of specimen. Consider a slip 

plane in one grain on the specimen surface. On the slip plane, another orthogonal ξ–η–ζ 

coordinate system is also defined so that ξ– and η– axes should be respectively parallel to the 

normal direction of the slip plane and the slip direction on the slip plane.  

The stress tensor [] for the slip system is correlated with an applied stress tensor [rz] 

in the following. At first, a directional cosine tensor [ l ] is introduced, and is used for the 

transformation between r––z and –– coordinates. By using the directional cosine tensor 

[ l ], the stress tensor [] for the slip system is calculated by Eq. (1) in the material subjected 

to the applied stress tensor [r z].  

[ ] = [ l ] [r z] [ l ]
T  (1) 

The superscript “T” in the above equation represents the transposed matrix, and components 

in the stress tensors are given as follows. 
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The directional cosine tensor [ l ] is expressed as Eq. (3) 
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The components of [ l ] are defined between r––z and  coordinates as shown in Table 1. 

 

Table 1: Directional cosines between r––z and –– coordinates 
 

Axes    

r lr lr lr 

 l l l 

z lz lz lz 

 

Considering slip in a surface grain, we may assume the plane stress state, i.e., r = rz = zr 

= r = r = 0. Under the above assumption, the resolved shear stress  in the slip direction 

on the associated slip plane, which is one of the most important factors for the feasibility to 

slip, is represented by 

 = z lz l +  lz l + z (lz l + lz l)      (4) 

In this model, it is assumed that a slip-band becomes a transgranular crack along the slip-

band when the criterion of Eq. (5) is satisfied and the number of stress cycles, Ni, which is 

required to make a slip-band into a crack, has passed. 

 > c  (5) 
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In the above equation,  is given by Eq. (4) and c is the critical shear stress to make a 

slip active. The number of stress cycles, Ni, is identical to the crack initiation life, and is 

calculated by using a dislocation pile-up model [11] as follows 

Ni = 2)()1(

2

c

c

   d

WG
 (6) 

Parameters G,  and Wc in Eq. (6) are respectively the shear elastic modulus, Poisson’s 

ratio and the fracture surface-energy, all of which are material constants. A parameter d in Eq. 

(6) is the slip-band length in a grain to be considered in the slip analysis, and is equivalent to a 

length of crack initiated in the grain. 

3.2 Crack propagation analysis 

The mode of crack propagation is analysed assuming that the growth rate da/dN is 

described by a power function of the J-integral range ΔJ as 

N

a

d

d
= C (ΔJ)m

 (7) 

where C and m are the coefficient in crack growth low and the exponent in the crack growth 

law. The J-integral range for short cracks is evaluated as follows [12,13]: 

ΔJ = 2π MJ ΔW a (8) 

where a is the half length of surface crack. 

For the mode I crack, MJ = (MK/Φ)2λ, where MK is the geometric correction factor for the 

stress intensity factor of the crack under consideration, Φ is the complete elliptic integral of 

the second kind and λ is the crack aspect ratio. The energy density parameter ΔW is given as 

 
n'

n'f
E

W








12

p2 
 (9) 

with 

 
 












 n'

n'

n'n'
n'f π

π

185.3

2

1
 (10) 

where Δ, Δ 
p, E and n are the nominal stress range, the nominal plastic strain range, 

Young’s modulus and the exponent of cyclic strain hardening, respectively.  

3.3 Crack coalescence analysis 

In this section, two modes of crack coalescence are described, and a mean grain-size D of a 

material is employed as a reference size parameter in coalescence criterions. 

During the crack initiation stage, the coalescence growth is taken into account among the 

distributed cracks for which initiation lives are calculated by Eq. (6). A crack under 

consideration is assumed to link with one of the other initiated cracks, if the tip-to-tip distance 

between the cracks is less than a specific length ξ D. This algorithm gives us quantitative 

information for the crack growth by linkage mode in the crack initiation stage. 
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The crack coalescence analysis is also carried out during the propagation stage of a 

dominant crack. In the analysis, coalescence is assumed to occur when the distance between 

the tips of the dominant crack and the other secondary or initiated cracks is less than a specific 

length ζ D.  

Each coalescence criterion is checked at the number of cycles when a new crack is initiated 

in the analysis. The values of ξ and ζ, which depend on the microstructure and the loading 

mode, are determined according to experimental observations. Crack linkage occurs more 

easily for larger values of ξ and ζ. 

4 SIMULATED RESULTS AND DISCUSSIONS 

4.1 Parameters used in the simulation and the simulation procedures 

Material constants used in the simulation for each material are summarized in Table 2. The 

constants C and m in Eq. (7) are obtained for da/dN in m/cycle and ΔJ in N/m. The 

parameters ξ and ζ associated with crack coalescence analyses have been determined based on 

actual crack coalescence behaviour, which was observed on sequential plastic replicas taken 

on specimen surfaces during fatigue tests for each material.  

 
Table 2: List of parameters used in the simulation 

 

Parameters (α+β) Ti-alloy β Ti-alloy 

E (MPa) 110 127 

G (GPa) 41 45 

ν 0.35 0.41 

Wc (kJ/m2) 2.0 2.0 

τc (MPa) 288 296 

C 1.07 × 10-10 (axial) 7.03 × 10-12 (axial) 

 1.10 × 10-10 (combined) 1.89 × 10-10 (combined) 

 3.91 × 10-15 (torsional) 3.86 × 10-11 (torsional) 

m 1.12 (axial) 1.32 (axial) 

 0.96 (combined) 0.84 (combined) 

 1.74 (torsional) 0.82 (torsional) 

ξ 1.0 (axial, combined) 1.0 (axial, combined) 

 4.0 (torsional) 1.6 (torsional) 

ζ 1.0 (axial, combined) 1.0 (axial, combined) 

 4.0 (torsional) 1.6 (torsional) 

 

Fatigue test conditions to be simulated are fully reserved and load-controlled conditions in 

axial, torsional and combined axial-torsional modes [9]. In the combined loading mode, the 

ratio of elastic nominal stress to shear range, Δz /Δzθ, was set to 31/2. Equivalent stress 

ranges tested in the experiments were respectively 2200, 2000 and 1800 MPa in the (α+β) Ti-

alloy, and 2100, 1900 and 1700 MPa in the β Ti-alloy. The experiments revealed that the 

cyclic deformation characteristics of each material were more appropriately described by 

using the equivalent stress and strain of von Mises type. 

Computer simulations for the fatigue testing conditions specified for each material were 

carried out using a statistical procedure of Monte Carlo type. Employing 50 series of uniform 

random numbers, 50 distinct modelled microstructures are generated for each material. They 

are composed of differently shaped grains with a variation in the direction of slip-lines. This 
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results in 50 distinct cracking patterns and their corresponding fatigue lives for a given testing 

condition for each material. 

4.2 Cracking morphology 

Typical examples of simulated morphologies of dominant cracks and other secondary 

cracks in an analysed area are illustrated in Figure 6, where the dominant cracks are drawn 

with bold lines. Figure 7 shows the cracking behaviour observed in the experiments [9]. By 

comparing the simulated and experimental cracking patterns, it is found that the simulated 

morphologies of dominant cracks almost coincide with those observed in the experiments. 

From a macroscopic aspect, the growth direction of a dominant crack in the case of the 

axial and combined loading almost coincides with the direction vertical to the maximum 

principal stress direction for both of the materials. However, in the torsional loading, the 

macroscopic growth direction of a dominant crack is found to be affected by the 

microstructures as follows. In the (α+β) Ti-alloy with stretched α-grains, the growth direction 

of a dominant crack is parallel to the axial direction. This behaviour is supposed to be caused 

by an anisotropic microstructure. On the other hand, in the β Ti-alloy having very large grains 

compared with those of (α+β) Ti-alloy, the growth direction of a dominant crack almost 

coincides with the direction vertical to the maximum principal stress direction. 
 

 
Axial loading                               Combined loading                                Torsional loading 

 

(a) (α+β) Ti-alloy 
 

 
Axial loading                               Combined loading                                Torsional loading 

 

(b) β Ti-alloy 
 

Figure 6: Simulated cracking morphologies 
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(a) (α+β) Ti-alloy                                                 (b) β Ti-alloy 
 

Figure 7: Cracking morphologies observed in experiments 

4.3 Failure life 

The failure life Nf in experiments is defined as the number of cycles at which a dominant 

crack of specific length is formed in the notched zone. The specific length for each material is 

determined according to experimental observations as follows [9]; 0.3 mm for the (α+β) Ti-

alloy and 3 mm for the β Ti-alloy. 

 

 
 

Figure 8: Comparison between experimental and simulated fatigue lives 



Y. Hitotsugi and T. Hoshide. 

 10 

Figure 8 shows a comparison between experimental and simulated lives. The simulated 

lives are calculated as the number of cycles, at which the length of a dominant crack reaches 

the same length as that obtained in the experiment. In the figure, each mark presents the actual 

fatigue life correlated with the average of 50 lives simulated for each material under 

respective loading condition. Two dotted lines are drawn in Figure 8 to indicate a variation 

band-range of factor of three. It is found that almost all marks are included in the band-range, 

excepting the result of  Ti alloy subjected to torsional loading under the lowest applied stress. 

Consequently, it may be concluded that the proposed procedure is applicable to the prediction 

of fatigue life variation within a factor of three. 

In the simulation, 50 simulated lives are obtained, so some statistical discussion may be 

possible. An error-bar in Figure 8 shows a life variation ranging from the simulated minimum 

to maximum lives. As seen in Figure 8, the dispersion of simulated fatigue life is largest under 

torsional loading for the both materials. The life dispersion in  Ti alloy is larger than that in 

(+) Ti alloy. In  Ti alloy, especially, the size of cracks initiated in grains becomes larger 

corresponding to huge grain-size. Therefore, the fatigue life is significantly affected by the 

frequency of crack coalescence. When the crack coalescence frequently occurs, the fatigue 

life may be reduced because it is defined as the number of cycles at which the length of a 

dominant crack reaches a specified length. 

5 CONCLUSIONS 

In the present work, a modelling procedure of fatigue crack growth was developed in the 

following way. At first, microstructures of polycrystalline materials were modelled by using 

Voronoi-polygons. Especially for a microstructure having stretched grains, a modified 

procedure was established adequately to represent such an unordinary microstructure. Then, 

the crack initiation was analysed as the slip plane separation in an individual grain and the 

number of cycles required for the separation was calculated by using a dislocation pile-up 

model. In the crack propagation stage, the crack growth was analysed as a competition 

between the growth by crack linkage during crack initiation and propagation stages and the 

propagation of a dominant crack as a single crack.  

By using a procedure proposed in this work, simulations of Monte Carlo type were carried 

out for two titanium alloys with different microstructures. The simulated cracking 

morphologies and resultant fatigue lives were compared with experimental results observed in 

biaxial fatigue tests of the two titanium alloys. It was clarified that simulated life ranges 

almost covered experimental results. 

It may be concluded that the proposed procedure using Voronoi-polygons in modelling 

microstructure is applicable to the analysis of fatigue crack growth affected by microstructural 

variation and stress state. 
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