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Summary. This work demonstrates the use of discrete exterior calculus for efficient solution 

of lattice models for quasi-brittle media. Applications to the mechanical behaviour of cement 

pastes and nuclear graphite are shown. Real microstructures are represented by a topologically 

averaged regular complex of 3D cells. Microstructure details, such size distribution and 

density of particles and pores, are mapped to the complex to determine geometrical and 

mechanical properties of cell elements. The complex is reduced to a lattice, the site-bond 

model, represented as a mathematical graph embedded in 3D. The technology for solving the 

model with discrete calculus is presented. Porosity effects on the materials elastic properties 

are analysed to demonstrate agreement with experimental data. Further, the evolution of 

macroscopic damage is analysed as emerging from the generation and growth of micro-crack 

population. The results agree very well with measured stress-strain behaviour of the materials. 

This suggests that the theory can be used for deriving damage evolution as well as cohesive 

laws for continuum based modelling of fracture in quasi-brittle media. 
 

1 INTRODUCTION 

Damage in heterogeneous materials is a mechanism for dissipation of strain energy, often 

associated with the generation and growth of micro-cracks. Initially these are of the size of 

specific microstructure features, but consequently coalesce to form larger micro-cracks. 

Specifically, quasi-brittle materials, such as cements, graphite and rocks, have elastic-brittle 

behaviour at the microstructure length-scale, resulting in micro-cracking, but show non-linear 

behaviour at engineering length-scales often referred to as “gracefulness”. The link between 

evolving micro-crack populations and the emergent longer-scale behaviour can provide 

insights into the microstructure-failure relations. 

Application of continuum-based strategies to analyse microstructure-controlled evolution 



Andrey P. Jivkov, Todor S. Todorov, Craig N. Morrison and Mingzhong Zhang 

 2 

of micro-crack populations is unrealistic. A realistic methodology needs to account for the 

heterogeneity and the mechanisms of micro-crack generation. Discrete lattice models provide 

frameworks for incorporating relevant materials information. Lattices are based on cellular 

architectures, where sites located in cells are linked by bonds resisting relative deformations. 

Relation between bond properties and continuum can be established either by matching bond 

forces to cell stresses [1, 2], or by equating strain energies in the bonds and the cell [3, 4]. The 

latter can be used for deriving explicit bond-continuum relations for regular lattices. In 2D, 

lattices based on hexagonal cells are the most widely used, as they can represent isotropic 

materials with Poisson’s ratio up to 1/4 in plane strain and up to 1/3 in plane stress with 

springs of positive stiffness [4, 5]. In 3D, it was shown that lattices based on SC, HCP and 

FCC arrangements could represent only isotropic materials with zero Poisson’s ratio [5]. 

Thence, realistic simulations of micro-cracking have been performed on 2D hexagonal 

structures [6, 7]. Real crack morphologies, however, are non-planar and an appropriate lattice 

is required for simulating crack spatial evolution. 

The site-bond method [8], based on a tessellation of space into truncated octahedral cells, 

was shown to reproduce a wide range of isotropic material. With bonds represented by beams, 

the methodology was used to predict damage evolution in cement under tension and 

compression [9] and concrete under complex loadings [10]. The method was further 

developed to represent bonds by spring bundles [11]. A new formulation, allowing for the 

incorporation of a richer set of microstructure characteristics, was proposed and applied to 

nuclear graphite [12]. This work presents a development in the generation of microstructure-

informed site-bond models for materials which can be idealised as three-phase media: stiff 

inclusions in a compliant matrix containing pores. Further, an application of analysis on 

graphs [13] for the solution of 3D deformation-damage problems is given. Finally, the 

proposed methodology is used for the analysis of cement paste and nuclear graphite. The 

focus is on the effect of aging in cement and of irradiation in graphite on the mechanical 

behaviour. These are communicated to macroscopic level through pore system changes. 

2 PHYSICAL AND MECHANICAL MODELLING 

2.1 Topological averaging 

The media we consider contain two sized features, stiff particles and pores, distributed 

randomly in a compliant matrix. It is assumed that the size distribution and the volume 

density of the two types of features are known from experiment, e.g. computer X-ray 

tomography. In principle, one can use directly a 3D image of a real microstructure and create 

an irregular cell complex, e.g. by constructing the Voronoi diagram of the particle set. In such 

case the pore set will be distributed within the cells. An irregular lattice can then be 

constructed by connecting the centres of neighboring cells in the Voronoi tessellation. This 

image-based modeling approach is useful for calibrating lattice element properties with in-situ 

tomography (4D imaging), but difficult to justify for up-scaling. Moreover, without 

experimental data the calibration of the lattice element properties is not feasible. Therefore, 

regularity in the cell complex representing the microstructure is preferable.  

We perform this regularization, or geometric homogenization, using a complex of 

compactly packed truncated octahedral cells, Fig. 1a, considering that a cell of this shape 

represents the average neighbourhood of a particle in a material [8].  This complex represents 
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the physical space with geometric characteristics fully determined by one length parameter. 

Selected here is the distance, S, between two parallel square faces. With this, the cell volume 

is V = S
3
/2, the area of the eight hexagonal faces is A1 = S

2
3√3/16, and the area of the six 

square faces is A2 = S
2
/8. The cell complex is reduced to a mathematical graph by placing 

sites (graph nodes) at the centres of all cells and bonds (graph edges) between neighbouring 

sites as illustrated in Fig. 1b. The bonds are eight normal to hexagonal faces (nearer 

neighbours) denoted by B1 with length L1 = S√3/2 and six normal to square faces (further 

neighbours) denoted by B2 with length L2 = S.  

  

 Figure 1: Cell complex as basis for lattice construction: (a) fragment illustrating compact tessellation of a three-

phase medium into cells, with each cell representing the average neighbourhood of particles; and (b) cell 

neighbourhood illustrating graph elements to which experimental information is mapped. 

2.2 Feature-free lattice mechanics 

The bond resistance to relative displacements between adjacent sites is represented by one 

axial (normal to cell face) and two transverse (tangent to cell face) springs, forming a proper 

orthogonal system. The two transverse springs in a bond have identical stiffness. Hence, site 

interactions are characterised by four constants, K1, T1, K2 and T2, the stiffness coefficients of 

axial and transverse springs in bonds B1 and B2, respectively. The constants are determined 

for locally linear displacement field by equating the energy in a continuum cell and half the 

energy in the 14 bonds [11]. The relations between the elasticity tensor and the constants are:  

 1 1 2

2
2 3 , 1,2,3
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Notably, the lattice represents cubic elasticity, but the system is over-determined and 

allows for infinitely many choices for the inverse relations. In our applications T2 = 0 is 

selected. This leads to the results for cubic elasticity, using Voigt notations C11, C12 and C44, 

and for isotropic elasticity, using Young’s modulus E and Poisson’s ratio , given by Eq. (2). 

With positive K1, K2 and T2, the lattice could represent isotropic materials with Poisson’s ratio 
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in the range -0.5 ≤  ≤ 0.25; a substantial improvement from previous 3D lattices which 

allowed for  = 0 only [5]. Extension for materials outside this interval is possible with 

negative spring stiffness. It should be realized that bond energies represent area energies on 

faces. Area energies are not necessarily positive definite quadratic forms of strains [13, 14]. 

The spring constants correspond to coefficients of the surface stiffness tensor and hence need 

not be positive as long as the total bond energy is positive. The results reported here are for 

isotropic materials with -0.5 ≤  ≤ 0.25, so spring stiffness is positive. 
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2 2 2
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2.3 Microstructure to model mapping  

Since a cell is topologically averaged particle neighbourhood, particles are placed in all 

cells of the complex with remaining volume occupied by matrix and pores. This, together 

with experimental data for size distribution, F(c), and volume density, c, of particles is used 

for calculating the model characteristic length. By distributing spherical particles with radii ci 

from F(c) to a number of cells, Nc, the cell size is calculated as: 

3
3

8

4
c

i c c

N

S c N


   
(3) 

Spherical pores of radii di from experimental size distribution F(d), are mapped randomly 

to cell faces until their cumulative volume reaches Vd, where V = Nc S
3
/2 is the total volume 

of the complex, and d is the experimental pore volume density. The allocation is such that the 

great circle of a pore is on a face to create the worst case scenario for initial face area 

reduction. Notably, the mapping of volume-less (crack-like) defects could proceed in a similar 

way, but number instead of volume density would be required. The pore mapping affects a set 

of faces, so that their initial areas, Ai, are reduced to effective areas ai = Ai – di
2
. 

2.4 Feature-modified lattice mechanics  

In the absence of pores, the spring constants can be calculated with Eq. (3) for known 

macroscopic elastic constants. These will represent a system averaged matrix-particle 

response. In the presence of pores, the measured macroscopic constants, E and , will be 

affected. The pore-free spring constants, K, T (= 1,2), need to be calibrated further so that 

the dependence of macroscopic properties on porosity observed experimentally can be 

simulated. The pore effect is represented by local changes of spring constants. As a first 

approximation the ratio between bond spring constants and bond associated area is fixed. The 

extent to which this approximation is valid is a subject of ongoing investigation. Presently, the 

pore-modified spring constants, k, t, are given by  

2
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In principle, the calibration of the pore-free K, T can be made with macroscopic E and , 

measured at two different porosities. This can be achieved by the steps: use arbitrary selection 

of E and to calculate K, T by Eq. (2); populate two models with the two pore systems; 

modify the spring constants by Eq. (4); calculate macroscopic properties of the models; 

determine the actual K, T by comparison to the two experimental sets of E and . This work 

uses a simplified calibration by assuming that  is unaffected by porosity change. The pore-

free spring constants are determined by one set of macroscopic properties at a given porosity. 

In addition to K, T, the pores affect bond failure, which is related to the matrix separation 

energy, , a material parameter. The bond failure energy is Gi =  ai, with 0 ≤ Gi ≤  Ai 

depending on the allocated pore. Overall bond behaviour is shown schematically in Fig. 2. 

Force F and displacement u can be positive or negative, but axial springs are not allowed to 

fail in compression. The initial spring constant, k, defines the response to damage initiation 

point (Fc, uc). Linear damage evolution is assumed to full separation at (0, m uc). It is noted 

that this is similar to cohesive zone models and potentially overly simplifies bond behaviour. 

More rigorous definition using lower scale simulations is a subject of ongoing work. 

 

Figure 2: Schematic spring mechanical behaviour 

2.5 Macroscopic elastic and damage behaviour  

A model bounded by planes X1 = 0, X1 = 20S, X2 = 0, X2 = 20S, X3 = 0, X3 = 20S was used 

for numerical simulations, where the coordinate system (X1, X2, X3) was normal to square cell 

faces. Boundary conditions normal to each plane were only applied, i.e. for plane Xi, normal 

displacements and forces of nodes were Ui and Fi while other displacements and rotations 

were unconstrained. For a plane where reaction forces were determined from analysis, the 

macroscopic stress normal to the plane was calculated as the ratio between the total reaction 

force and the boundary area, i.e. i = Fi / 400S
2
. For a plane where nodal displacements were 

determined from analysis, the macroscopic strain normal to the plane was calculated as the 

ratio between the average displacement and the model length, i.e. i = Ui / (21
2
×20S).  

The calculation of macroscopic Young’s modulus and Poisson’s ratio was performed from 

uniaxial tensile or compression simulation in a standard way using the above stress and strain. 

Micro-cracking was simulated by failure of bonds according to Fig. 2. The macroscopic 

damage was measured by the relative change of the Young’s modulus, D = 1 – E / E0, where 

E0 was the initial value for which the lattice local properties were calibrated. The simulations 

were performed to maximum load; post-peak behaviour was not simulated. 

F 

u 

uc 

Fc 

ki muc 

Gi 
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3 MATHEMATICAL FORMULATION AND COMPUTATION 

The discrete view of the material is conveniently described by the terminology of algebraic 

topology. The base entity in the theory is a p-cell, σp, defined as a set of points homeomorphic 

to a closed unit p-ball Bp = {x ∈ R
p
 : |x| ≤ 1}. A collection of p-cells defines a p-complex if: 

(1) the boundary of each p-cell (for p > 0) is a union of lower-order p-cells; and (2) the 

intersection of any two cells is either empty or a boundary element of both cells. With this 

terminology, the complex in Fig. 1(a) is a 3-complex. Each cell is a 3-cell with faces 2-cells, 

edges 1-cells and vertices 0-cells. The site-bond model, produced by reduction of this 3-

complex, is a 1-complex embedded in R
3
 with bonds being 1-cells and sites being 0-cells. 

Discrete exterior calculus provides the apparatus for analysis of such discrete spaces [13]. 

Each p-cell is oriented by specifying a node order and may have one of two possible 

orientations. Main role in the theory plays the cell boundary, ∂σp, which is homeomorphic to 

the unit ball boundary ∂Bp = {x ∈ R
p
 : |x|=1}. The complex boundary is represented by the 

incidence matrix Np, with coefficients n
p

ij = 0 if σp-1,j is not on the boundary of σp,i; n
p

ij = +1 if 

σp-1,j is on the boundary of σp,i and coherent with its induced orientation; n
p

ij = -1 if σp-1,j is on 

the boundary of σp,i and not coherent with its induced orientation. 

A p-chain, p, is an np-tuple which assigns an object to each p-cell, where np is the number 

of distinct p-cells in the complex. In the classical theory the objects are scalars [13], but we 

introduce an extension to R
3
 vectors to represent displacements and forces. Applying Np

T
 to a 

p-chain results in a (p−1)-chain of objects, i.e. p-1 = Np
Tp. Hence, Np

T
 is the matrix 

representation of the discrete boundary operator, Np
T
 : Cp → Cp-1, where Cp denotes the vector 

space of p-chains. Thus, Np
T
 provides both a representation of the topology of the discrete 

manifold and of the boundary operator ∂p. This is very useful for simultaneous analysis of 

structure and property of discrete systems. For a basis of chains i ∈ Cp one can use scalar 

product to define a metric tensor g
p

ij = <i, j >. For orthogonal basis, i.e. g
p

ij = 0 for i ≠ j, the 

metric tensor is represented by an np × np diagonal matrix of objects Gp = diag(g
p

ii). 

A p-cochain is a linear functional that maps a p-chain to objects at each p-cell. The vector 

space of p-cochains is C
p
. Pairing between chains and cochains is equivalent to integration in 

continuum analysis and uses a coboundary operator, dp, defined by the discrete analogue of 

the fundamental theorem of calculus [dp c
p-1

, p] = [c
p-1

, Np
T
 p], where c

p
 is a p-cochain and p 

is a p-chain. The coboundary operator is given by dp = Np : C
p-1

 → C
p
. Converting a p-chain 

into its equivalent p-cochain is given by c
p
 = Gpp. The inverse mapping from p-cochains to 

p-chains can be computed using the inverse of the metric tensor Gp
-1

. 

These preliminaries allow for formulating discrete boundary value problems for the site-

bond model as a 1-complex. For compactness, the incidence matrix N1 and inverse metric 

tensor G1
-1 

are denoted by A and K, respectively. For n sites and m bonds, dim(A)= n × m and 

dim(K) = n × n. 0-cochain, u, assigns displacement vectors (R
3
 objects) to each 0-cell (site). 

The coboundary operator d1 is the gradient of these displacements, a 1-cochain. Physically, 

this means that Au assigns relative displacement vectors to each 1-cell (bond). The 1-cochain 

is converted to a 1-chain of force vectors, f, using the metric K, so that f = K A u. Note, that 

each diagonal element of K is a 3 × 3 diagonal matrix with coefficients equal to local axial 

and transversal spring stiffness. Finally, the boundary operator 0 represents the divergence of 

these forces, which is a 0-chain. This divergence must equal zero for equilibrium at sites and 

allows for the formulation of the boundary value problem on the graph as follows: 
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TA K Au b , (5) 

where b is a 0-chain of force vectors. Note that L = A
T
 K A is the discrete Laplace operator 

and it is symmetric. Prescribed forces at sites enter directly b. Prescribed displacements are 

imposed in a standard manner as in finite element method. The symmetry of L suggests two 

approaches for solving the linear system (5): direct solver based on Cholesky decomposition 

of L; and iterative solver based on the conjugate gradient method. Both approaches have been 

implemented in an in-house code, taking advantage of efficient algorithms for sparse matrix-

vector manipulations. The iterative solver was found to be much faster than the direct solver. 

The described formulation is a natural approach for dealing with discrete topologies and 

can be extended to 3-complexes, which is a subject of ongoing work. The key point is that 

approximations, such as shape functions in finite elements, are avoided. The only 

approximation is imposed by the selection of the discrete topology. Further, generation of 

micro-cracks with zero metric (stiffness) coefficients does not create problems for the 

solution, as far as the 1-complex remains connected. The in-house code implementing the 

formulation was used to solve the problems in the next section. 

4 RESULTS AND DISCUSSION 

4.1 Cement paste 

The cement paste studies were on ASTM type I Portland cement with water-to-cement 

(w/c) ratio 0.5. The microstructure information was acquired with high-resolution computed 

tomography (micro-CT) at a spatial resolution of 0.5 µm and a source voltage of 59 kV after 7 

and 28 days of aging. Images and details of processing can be found in [16]. Obtained 

microstructure characteristics are: porosities at curing ages of 7 and 28 days are 18.72% and 

12.58%, respectively; particle volume fractions are 15.67% and 8.65%, respectively. The size 

distributions of pores and anhydrous cement particles are shown in Fig. 3. 

 

Figure 3: Microstructure properties of cement paste obtained by image analysis: pore size distribution (left); 

particle size distribution (right) 

These data is used to construct models as described in Section 2. The calibration of the 

spring constants has been performed with the cement elastic properties at curing age of 28 
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days, i.e. at 12.58% porosity. From the calibration, the predicted Young’s modulus as a 

function of porosity is given Fig. 4. The relation is approximately linear in the porosity range 

typical for cements and the result is consistent with the experimental finding in [17]. It should 

be noted, however, that at very small porosities the relation deviates from linearity, which is 

also consistent with previous reports on porosity effects on elastic constants [18]. 

 

Figure 4: Predicted porosity dependence of Young’s modulus of cement paste 

For the simulations of mechanical behaviour of the cement paste with micro-cracking the 

energy of separation is 50 mJ / m
2
. The simulated stress-strain curves under uniaxial tensile 

loading and the corresponding macroscopic damage evolution at different curing ages, i.e. 7 

days and 28 days, is shown in Fig. 5. Compared to 7-day old cement paste, 28-day cement 

paste possesses a stronger nonlinearity prior to the final failure, and has a higher peak strain 

and tensile strength, which are mainly due to the different pore systems of two samples, as 

shown in Fig. 3. It can be seen that 7-day old cement paste contains much more “large” pores 

with sizes ranging from 10 to 20 µm. The bonds with such “large” pores tend to fail earlier 

due to the smaller effective surface area, which represents the initiation of micro-cracks in the 

sample. As the loading increases, these local micro-cracks propagate and coalesce much more 

easily. As a result, the macroscopic damage in 7-day old cement paste is less than that in 28-

day old cement, i.e. less energy is dissipated prior to failure. 

 

Figure 5: Stress-strain curves (left) and damage evolution (right) in cement pastes under uniaxial tension 
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The effect of porosity on the tensile strength of cement paste is studied by models with 

identical pore size distribution, particle size distribution and particle density but different 

porosities ranging from 8% to 35%. The obtained relationship between tensile strength and 

porosity is shown in Fig. 6 along with the available experimental data [19]. A good agreement 

between the simulations is demonstrated, especially for porosities higher than 20%. 

 

Figure 6: Simulated and experimental tensile strength-porosity relation in Portland cement paste 

4.2 Nuclear graphite 

The studies on nuclear graphite were based on two grades of graphite of differing 

microstructure, both developed for use in high temperature reactors; IG110 graphite 

(manufactured by Toyo Tanso, Japan) and PGX graphite (manufactured by Gratech, USA). 

The microstructure data used to populate the site-bond model was recreated from reported 

optical imaging results [20]. The distribution of pore sizes used for each graphite grade was 

recreated from the empirical expression given in [20] with the resulting cumulative 

probability distribution shown in Fig. 7. The upper limit of pore sizes was set at 1000μm, with 

only a tiny amount of larger pores discounted with this assumption. For briefness only the 

results for IG110 are shown here; detailed comparison of both grades is given in [12]. 

 

Figure 7: Cumulative probability function of pore sizes used for two graphite grade, recreated from [20]. 
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The size of filler particles was assumed to follow a log-normal distribution with the 

required fitting parameters given in Table. 1. The porosity of IG110 graphite in the virgin 

state is 14.73% and this may grow to 60% when the graphite is irradiated in service. The 

particle volume fraction is 20% and does not change with irradiation. In reality, the increase 

of porosity with irradiation does not leave the pore size distribution shown in Fig. 7 

unaffected. Evidence suggests that the proportion of smaller pores increases. However, there 

is not yet reliable data for the changes in the size distribution. Therefore, in this work the 

effect of irradiation is introduced solely by increasing the pore volume fraction from virgin 

state to highly irradiated state while keeping constant cumulative probability of pore sizes.  

Table 1: Microstructure parameters and macroscopic elastic data for nuclear graphite IG110 

Graphite 

grade 

Mean particle diameter 

(μm) [20] 

Standard deviation 

(μm) [20] 

Young’s modulus, 

E (MPa) [21] 

Poisson’s ratio, 

ν [21] 

IG110 27 22 9800 0.14 

 

The predicted stress-strain response and damage evolution in the graphite at different 

porosities are shown in Fig. 8. It can be seen that at lower porosities the failure is the typical 

‘graceful’ failure characteristic of quasi-brittle materials. As the porosity is increased, 

representing different levels of radiation damage, the failure changes to a more glass-like 

brittle fracture with minimal damage and energy dissipation before failure. The failure in 

these cases is of “avalanche” type by simultaneous rupture of a set of critical bonds. 

 

Figure 8: Stress-strain curves (left) and damage evolution (right) in IG110 graphite under uniaxial tension 

The tensile strength has been shown experimentally to decay exponentially with increased 

porosity [22, 23]. According to the Knudsen phenomenological relation [24] the strength 

approaches zero at large porosities. The results obtained from our model, shown in Fig. 9, 

follow a similar exponential decay, but the end value is not zero. The reason for this is the 

resistance to instantaneous failure due to a number of bonds without pores even at high 

porosities. Even for avalanche failure, the system requires external work to overcome the 

failure energies assigned to these bonds. Larger porosities may improve this estimate. 
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Figure 9: Simulated tensile strength-porosity relation for IG110 graphite 

5 CONCLUSIONS 

- Faithful mapping of microstructure features to a regular cell complex is presented for 

three-phase quasi-brittle media; 

- Reduction of the cell complex to a site-bond model with spatially distributed bond 

mechanical properties is described; 

- Graph-based formulation of the site-bond model is given together with the associated 

solution of boundary value problems by discrete exterior calculus; 

- Results obtained with the proposed methodology are shown to be in good agreement 

with experiments for two different media – both in terms of elasticity-porosity 

relations and in terms of porosity effects on stress-strain behaviour and strength; 

- The methodology can be used to derive macroscopic parameters from underlying 

microstructure features. 
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