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Abstract. In the last centuries, the typical processing of musical instruments was pushed
forward empirically based on the personal experience of the instrument manufacturer.
This paper presents steps to use methods of computational mechanics to optimize mu-
sical instruments. These first steps are the investigation of the musical properties of
radiated sound and the derivation of criteria to evaluate and rate this sound. Therefore,
the sound and the structural behavior of two different triangle instruments are analyzed
using experimental modal analysis. The chosen instruments exhibit only small geometrical
differences, but a clearly different radiated sound. Furthermore, due to the simple geome-
try and the isotropic material behavior, numerical models can be obtained for comparison
of computational results and measurements.

1 INTRODUCTION

The history of musical instruments dates back nearly as long as the humanity itself.
During the last centuries, the development of the quality as well as of the play of musical
instruments was pushed empirically and experimentally by instrument manufacturers and
players. This current stage of development can hardly be surpassed. At first sight, the
scientific study of instruments does not seem to allow any further significant improvement.
It is, therefore, very important to gain a mechanical understanding for these complex
systems and to provide numerical models to illustrate the behavior of sound. At a second
sight this deepened understanding may be the chance for systematic improvements.

2 PSYCHOACOUSTICS

To evaluate and rate the sound of an instrument, it is necessary to take the psy-
choacoustic effects of the human perception of sounds into account. Hearing cannot be
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considered only as the phenomenon of the transfer of mechanical waves from the air to
the inner ear. Caused by the mechanical behavior of the human ear, the sound inten-
sity is weighted depending on the frequency. However, even more important is that the
perception of sound strongly depends on the person and the musical experience of the
listener.

Basically, a sound is made up of a multitude of different tones which are heard at the
same time. A single tone is defined by a frequency and an amplitude. The frequencies of
tones depend on the mechanical behavior of the musical instrument. Tones of instruments
which are excited only one time, e.g. percussion instruments or the piano, additionally
exhibit a damping ratio. This means that the amplitude of the tone fades away.

For technical applications the radiated sound can be described by its spectrum. The
spectrum is transformed within the inner ear into neural pulses. This leads to different
effects for the cognition of the sound. In the following, these effects are explained for two
simultaneously sounding tones.

2.1 Overtone series

For the cognition of a sound one global distinction can be done between dissonance and
consonance. Here it is intending what happens when two tones with different frequencies
are played simultaneously. In this context, dissonance describes the effect that the differ-
ence of the frequencies of two simultaneously sounding tones is smaller than the critical
bandwidth. The listener than only notices one single tone. If the difference is bigger than
the critical bandwidth, the listener hears two distinct tones which can be harmonious or
disharmonious. This distinction is not part of this paper because the triangle instrument
can be played without respect to the tonality. In the following, three effects are explained
which occur depending on the difference of the frequencies.

The characteristics of the sound of an instrument significantly depends on the over-
tones. These overtones originate from the structural behavior, e.g. the string of a bow
instrument oscillates with the full length, the half length, the third of the length and so
on. The frequency series of the overtones fi can be described by

fi = (i+ 1)f0ci (1)

depending on the fundamental frequency f0. For an absolutely harmonic sound, all over-
tones are multiples of f0 where the factor ci = 1 for all overtones. The constant ci is an
indicator for the brightness of the sound. The less ci deviates from an average value c,
the more pleasant the sound appears.

From the overtone series, the intervals of two simultaneously or successively sounding
tones is derived. Intervals are the basic modules of music. They build melodies or chords.
The interval of two tones with the frequencies f1 and f2 is defined by the proportion
p = f1/f2, e.g. the proportion of an octave is poct = 2/1, a minor second pminSec = 16/15,
a major second pminSec = 10/9, and a minor third pminTh = 6/5. These intervals can also
be dissonant or consonant, see Figure 1.
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2.2 Critical bandwidth

The critical bandwidth is used as a technical term from psychoacoustics describing
a frequency bandwidth of auditory filters created by the inner ear. If the difference of
the frequencies of two simultaneously sounding tones f1 and f2 is smaller than the value
of the critical bandwidth ∆fcrit, than the listener hears only one tone and the effect of
interference between these frequencies arises, [1]. The bandwidth depends on the average
frequency f = (f1 + f2)/2.

Figure 1 shows the dependency of the critical bandwidth on the average frequency
f , [4]. The blue line represents the critical bandwidth ∆fcrit at each average frequency f
in the frequency range from 100 Hz to 20 kHz. This line splits the plot into an area of
consonance (upper area) and the area of dissonance (lower area).

In addition, the frequency differences between the tonal intervals of a minor second, a
major second and a minor third depending on the frequency are presented. It can be shown
that any minor or major second, independent of the frequency, is dissonant because in the
whole frequency range the frequency differences are smaller than the critical bandwidth.
The first consonant interval in the music is the minor third. The fact of consequent
dissonant intervals is used in music to create chords with small or large disharmonies.
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Figure 1: Critical bandwidth depending on the average frequency of two tones.

A dissonance is perceived as roughness because the listener only notices one tone,
but with a not clear sound. Different experiments have shown the dependency of the
roughness on the frequencies. The roughness of two simultaneously sounding frequencies
can be graded. However, this is a subjective classification depending on the musical
experience of the listener.
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2.3 Beat frequency

A more detailed look to the critical bandwidth shows that tis range can be further
split into the dissonant areas and the area of beat frequency, see Figure 2. The beat
frequency occurs in a small range of the critical bandwidth around the average frequency
f . Actually, it is not dissonant because the listener only hears one single tone with a
beating amplitude, [3].

Figure 2: Partition of the critical bandwidth into the dissonant area and the area of beat
frequency.

The bandwidth of beat frequency does not depend on the average frequency of the two
tones. It is in the range of 10 Hz to 15 Hz and depends on the musical experience of
the listener. The phenomenon can be explained mathematically by two simultaneously
sounding tones with the frequencies f1 and f2 with identical amplitudes as

cos (2πf1t) + cos (2πf2t) = 2 cos
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)
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)
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The first factor on the right-hand side describes the carrier signal which the listener
hears as one tone. The carrier frequency corresponds to the average frequency f of f1 and
f2. It is modulated by the second factor with the frequency f∆ = (f1 − f2)/2, which is
perceived as a pulsation of the amplitude. Figure 3 shows the superposition of two cosine
oscillations with a frequency difference f1 − f2 = 2 Hz.
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Figure 3: Beat frequency occurring by the superposition of two tones with a frequency
difference of 2 Hz.
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Mathematically, this frequency f∆ exists independent on the frequency difference. How-
ever, if f∆ is smaller than 10 Hz to 15 Hz the roughness of the dissonant sound turns into
the perceptible pulsation of the amplitude.

3 EXPERIMENTAL MODAL ANALYSIS

The experimental analysis of each of the two triangle instruments is divided into two
parts. First, the results of the experimental modal analysis using a Laser-Doppler Vibrom-
eter (LDV) provide the eigenfrequencies and eigenforms of the structure. In a second step,
a measurement is done using a microphone in order to obtain information related to the
transmission behavior from the structural vibration to what the listener hears.

3.1 Suspension and excitation

In musics usage, the triangle is suspended by one string and it is excited by a small
metal stick. In the experiment the triangle has to be suspended at two points to avoid
a twist and a large motion during the measurement. With the very soft springs of the
suspension, the triangle can be decoupled from the experimental rig. Furthermore, this
suspension facilitates the comparison between measurement and numerical analysis, as
the structure can be assumed as free moving, see Figure 4.

The eigenmodes of the triangle can be split into in-plane (IP) modes and out-of-plane
(OP) modes. The measurement by the used LDV is only one directional. That is why it
is necessary to separate it into the IP-direction and the OoP-direction. In Figure 4 the
two excitation directions are shown.

Figure 4: Suspension and excitation directions of the triangle instrument.

Similar to the original play, the excitation in the experiment is performed by an impact
hammer with a metal tip. The sound does not differ significantly from the one by an
excitation with the metal stick. To ensure that every excitation takes place at the same
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location, in the same direction and with approximately the same energy, the impact
hammer is mounted as shown in Figure 5.

Figure 5: Mounting of the impact hammer.

3.2 Measurement and analysis

The measurement of the velocity for the modal analysis is done using a Polytec
Scanning-Laser-Doppler Vibrometer PSV-500. In contrast to alternative measuring meth-
ods with acceleration sensors, the contactless measurement using Laser-Doppler Vibrom-
etry has some advantages. At first, the vibration properties of the structure are not
influenced as when adding additional accelerometer masses. Furthermore, the optical
support of the PSV-500 greatly simplifies the set up of the scan grid. The measurement is
done at 74 different points. In order to obtain a good signal quality of the backscattered
laser beam, a reflection foil has to be applied to the chrome-plated surface of the triangle.

The measurement of the sound is performed by a microphone, placed at a distance
of 40 cm from the triangle. On the one hand the distance is limited by the spatial
dimension of the test rig, and on the other hand, there must be a minimum distance to
measure outside the acoustic near field. The suspension geometry and the excitation of
the structure remain unchanged.

4 NUMERICAL ANALYSIS

The global geometry of the two different triangle instruments is nearly the same. Both
are specified as 8′′ triangle. This means that the sides of the triangle have a length of
about 8′′. The exact geometries of the instruments can be found by measurement, the
material of both is specified as steel.

The numerical analysis is performed using the finite element program Ansys. To iden-
tify the real material properties, a parameter identification is done by updating the prop-
erties density, Young’s modulus and the Poisson ratio. The criterion to find the optimal
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parameters is the minimization of the maximum of the relative error between the eigen-
frequencies of the measurement and the numerical eigenvalues calculation. The triangle
exhibits 42 eigenfrequencies in the audible range from 20 Hz to 20 kHz. Table 1 shows
the first 15 frequencies of the high quality triangle in measurement and simulation as well
as the relative error between them.

Table 1: Comparison of the eigenfrequencies between measurement and simulation.

measurement in [Hz] simulation in [Hz] relative error in [%]
f1 148.4 148.5 0.09
f2 152.3 153.6 0.85
f3 251.9 252.4 0.16
f4 724.6 725.9 0.18
f5 892.6 893.6 0.11
f6 1349.6 1359.8 0.75
f7 1388.6 1395.3 0.48
f8 1517.6 1531.6 0.93
f9 1539.1 1532.1 0.45
f10 2509.8 2520.1 0.41
f11 2845.5 2828.9 0.58
f12 3250.2 3265.3 0.46
f13 3505.9 3503.6 0.06
f14 4039.8 4076.2 0.90
f15 4064.7 4089.0 0.59

The maximum deviation between measurement and simulation is less than one percent.
That indicates that the numerical model and the associated material properties provide
a very good approximation of the real instrument. The same analysis is also done for the
low-quality triangle instrument, where results have a similar quality as for the high-quality
triangle.

5 RESULTS

It is worth to note that the triangle is a percussion instrument and it can be played
without regard to the tonality. Therefore, the series of frequencies should not exhibit one
fundamental tone. That is why the criterion of harmoniousness according to the overtone
series cannot be applied.

Much more important is the behavior in time domain. This can be represented in a
spectrogram with the amplitude over frequency and time as shown in Figure 6 for the OP-
direction of the high-quality triangle (left) and the low-quality triangle instrument (right).
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The amplitude represents the acoustic pressure normalized to the excitation energy over
a time of five seconds and a frequency range of 0 kHz to 12 kHz.

In this diagrams two significant effects can be illustrated. The first is the loudness
of the radiated sound represented by the acoustic pressure at the measurement point of
the microphone. At the same excitation energy, the sound of the high-quality triangle is
much louder than the sound of the low-quality triangle. The second characteristic is the
damping behavior. The sound of the high-quality triangle appears much longer than the
one of the low-quality triangle.

Figure 6: Spectrograms for the high-quality triangle (left) and the low-quality triangle
instrument (right).

Generally, the sound of a triangle instrument appears pleasant and agreeable if it
contains a fundamental sound of a couple of frequencies which are significantly louder
than the remaining sound. This remaining sound is without a tonality and the sound
level is significantly lower than the one of the dominant sound.

The spectrum of the high-quality triangle contains four tones which are significantly
louder than the others, see Figure 6 (left). The corresponding frequencies are listed in
Table 2.

Table 2: Dominant frequencies of the fundamental sound of the high-quality triangle.

measurement in [Hz]
f9 1539.1
f16 4239.6
f17 5658.9
f21 7795.9
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Important for a pleasant and agreeable sound is, that these louder tones are not dis-
sonant. This can be estimated by the criterion of the critical bandwidth. Two sequenced
frequencies of the spectrum of the dominant sound are compared with reference to the
critical bandwidth criterion. Here, the average frequency of two respective frequencies is
calculated and the related critical bandwidth is obtained. This can be represented in a
diagram shown in Figure 7.

The red bars represent the location of the eigenfrequencies from Table 2. In this case
there are three pairs of frequencies. The blue bars show the width of the critical band
between two frequencies. In this diagram it can be seen, that the frequency difference
of each pair of the dominant sound is bigger than the critical bandwidth. Therefore, the
dominant sound is not dissonant.

Figure 7: Critical bandwidth between two neighboring frequencies of the dominant sound
of the high-quality triangle.

The same diagram can be presented for the frequencies of the non-dominant sound.
Therefore, it is necessary to select only the audible frequencies of the sound. Due to the
excitation in the OP-direction only the corresponding frequencies to the OP-eigenmodes
are remaining, because the modes of the IP-direction are not excited. But, not all of
the OP-eigenmodes are excited or they do not create an audible tone. This can be
determined by a threshold of the acoustic pressure created by the inner ear, [2]. The
relevant frequencies of the audible tones are listed in Table 3.

Figure 8 shows dissonant and consonant frequency pairs of the non-dominant or sub-
liminal sound. In contrast to the fundamental sound, this spectrum exhibits a couple
of dissonant frequency pairs. A dissonance occurs if the difference of two frequencies is
smaller than the corresponding critical bandwidth. Caused by the fact that the dominant
sound is much louder than these dissonances, the non-dominant sound does not influence
the consonance of the whole sound. These dissonances can also be called an imperfection
what makes the sound interesting and gives the triangle a recognition value.

These imperfections in the sounds of instruments are the reason, why people are able to
distinguish between a large variety of instruments. It is also the reason why persons prefer
certain different instruments. If the imperfection is too dominant, the sound appears
disagreeable.

Compared to the high-quality triangle, the sound of the low-quality triangle appears
very dissonant. This can be explained from different effects. The first is that the spec-
trum exhibits a significantly fewer number of eigenfrequencies than the other triangle.
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Table 3: Audible frequencies of the high quality triangle not contributing to the funda-
mental sound.

measurement in [Hz]
f5 892.6
f11 2845.5
f12 3250.2
f13 3505.9
f18 5779.3
f19 7038.9
f24 9485.8
f25 10205.8
f27 12605.1

Figure 8: Critical bandwidth between two neighboring frequencies of the none dominant
sound of the high-quality triangle.

In addition, the spectrum of the low-quality triangle has only one tone which is signifi-
cantly louder than the remaining tones. This single tone is very dominant but does not
form a sound. Due to this, the sound cannot be split into a fundamental sound and a
non-dominant sound. Therefore, all tones have nearly the same audibility thus the same
weighting in the spectrum.

In Figure 9 the audible tones of the spectrum of the low-quality triangle are represented.
All these tones are perceived with nearly the same audibility. The pairs of tones exhibit
a couple of dissonances which are distributed over the whole frequency range.

6 CONCLUSIONS

The investigation of the two different triangle instruments has shown that it is possible
to provide numerical models representing the structural behavior of the real instrument.
The relative error of the eigenfrequencies and their corresponding eigenforms between
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Figure 9: Critical bandwidth between two neighboring frequencies of the spectrum of the
low-quality triangle.

the experimental modal analysis and the numerical simulation is less than one percent.
This constitutes a very good initial basis for further investigations of both triangles on
the sound radiation in time domain and the analysis of the geometrical features of the
high-quality triangle.

Furthermore, methods of psychoacoustics were introduced to evaluate and rate the
sound of instruments. With the help of these criteria it has been show why the sound of
the high-quality triangle is sensed as much more pleasant than the one of the low-quality
triangle. The main criterion is that the overall sound exhibits a separation in a dominant
sound, consisting of a few frequencies which are not dissonant, and a non-dominant sound
which can exhibit a couple of dissonances to give the sound an imperfection.
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