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Abstract. The present paper investigate the performance of a hybrid uncertainty quantification
(UQ) method for robust optimization. In the beginning of the optimization this method uses a
first order second moment method (FOSM) for UQ and switches during the optimization pro-
cess to an adaptive stochastic collocation method (ASCM). The idea is that the disadvantages of
the FOSM are a compensated by the advantages of the ASCM and vice versa. In order to assess
the efficiency of this method, several configurations of an uncertain flow optimization problem
are calculated. The results are examined with respect to the computational cost and reduction
of the objective function. Furthermore, the results are compared to a robust optimization with a
pure ASCM.

1 INTRODUCTION

Nonintrusive sampling methods for uncertainty quantification are quite popular because in
this case well developed deterministic computational fluid dynamics (CFD) solvers can be used
for flow simulation. The drawback of these methods such as Monte Carlo simulation or stochas-
tic collocation is that they may become highly computationally intensive. Especially for robust
optimization with many uncertain input parameters this can be a crucial issue.
In practice, this problem is often avoided by using a deterministic optimization first and af-
terwards examining the result with an uncertainty quantification in order to check if the result
fulfills the given requirements for robustness. However, in this way not necessarily the robust
optimum is found.
We propose a combination of an adaptive stochastic collocation method on sparse grids (ASCM)
[1] and a sensitivity derivatives based first-order second moment method (FOSM) [2] for uncer-
tainty quantification together with a gradient-free Nelder-Mead optimizer [3]. The idea is that
the disadvantages of the FOSM are a compensated by the advantages of the ASCM and vice
versa.
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Section 2 presents the theoretical background of flow problems under uncertainty. Section 3
describes the key idea of robust optimization. Numerical methods for the quantification of
uncertainties are presented in Section 4. Section 5 describes a gradient free optimizer. Subse-
quently the hybrid approach is proposed in Section 6. Several tests are computed in order to
compare the performance of the hybrid scheme to a robust optimization method with a pure
ASCM in Section 7. Finally, the results are summarized in section 8.

2 FLOW PROBLEMS UNDER UNCERTAINTY

In this work we focus on incompressible, steady and laminar flow problems. These flows
can be modeled by the Navier-Stokes equations [4]. The corresponding equations for the mass
conservation and the momentum are written as:

∂uj
∂xj

= 0 (1)

∂(ρuiuj)

∂xj
−
∂µ ∂ui

∂xj
+

∂xj

∂xi

∂xj
= − ∂p

∂xi
+ ρfi,

where ui is the velocity vector and xi is the position vector. The fluid density and dynamic
viscosity are represented by ρ and µ. The vector fi describes the body force. In order to get
the closed equation system proper boundary conditions have to be applied. The most common
conditions on the boundary Γ are:

- Dirichlet condition: ui = ubi

- Neumann condition: ∂u
∂xi
ni = gb.

For simplicity, in the following we write only a general form of a PDE instead of the Navier-
Stokes equations. A PDE can be written in the form

A(φ(x), x) = f(x) in D
B(φ(x), x) = g(x) in ∂D, (2)

where A is the differential operator which also includes all parameters such as fluid properties.
φ describes the flow field solution. The boundary conditions operator is denoted by B. D is a
spatial domain in Rd with its boundary ∂D. x refers to the elements of D. The forcing term and
boundary conditions are denoted by f and g, respectively.
The formulation (2) assumes that all system parameters are exactly known, but actually in quan-
tities of physical processes there is always a certain amount of fluctuation. These uncertainties
can be caused by natural fluctuations like the outdoor temperature or atmospheric pressure.
Another example are human-made fluctuations in manufacturing processes, so each product is
slightly different due to existing tolerances. Uncertainties in simulations can also arise from
lack of knowledge, if some effects are too complicated, so that values can be estimated only

2



C.Thiem, M. Schäfer

approximately.
In order to account uncertainties in flow simulations the system (2) has to be extended to a
stochastic system of the form

A(φ(x, ω), x, ω) = f(x, ω) in D × Ω

B(φ(x, ω), x, ω) = g(x, ω) in ∂D × Ω. (3)

The stochastic system (3) includes the random parameter space Ω, which contains possible
realizations for the uncertain parameters. These realizations can be mapped on ω. The uncertain
system parameters result in a stochastic system output which can be described with methods
from the field of uncertainty quantification. An overview and description of these methods are
given by [5, 6, 1].

3 ROBUST FLOW OPTIMIZATION

The aim of robust flow optimization is to obtain optimal design that are not sensitive to
fluctuations of system parameters. This can be realized by minimizing the standard deviation
σJ of objective function J(φ(a, ω), a, ω), where a is the vector of design parameters. In the
following the objective function is denoted by J . To ensure that the solution of the optimization
satisfies further requirements the mean value J̄ of the objective function must be considered.
An overview of several such robust optimization is provided by [7, 6]. In this work we focus on
the formulation:

min J̄ + λσJ subject to (4)
F (φ(a, ω) , a, ω) = 0

al ≤ a ≤ au,

where λ is a scalar, F is an equality constraint and al and au are the lower and upper bounds for
the design parameters a. The main equality constraints in flow optimization problems are the
Navier-Stokes equations.
In order to solve the robust problem 5 conventional optimization methods can be applied. In 5
the gradient free Nelder-Mead optimization method is briefly presented. For detailed descrip-
tions of further optimization methods we refer to [8, 6, 9].

4 NUMERICAL METHODS FOR UNCERTAINTY QUANTIFCATION

In general methods for UQ can be categorized into two classes. On the one hand there are
intrusive methods, which require a reformulation of the original model to a stochastic version
and on the other hand the non-intrusive methods, which only need a set of solutions of the
deterministic problem. An overview of the different types of UQ is given by [5, 6].
In the following sections two methods for UQ, FOSM and ASCM, are described.
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4.1 First Order Second Moment

The idea of the First Order Second Moment method is to approximate the objective function
J by a Taylor series. The first order Taylor series approximation of J can be written as

J(ω) = J(ω̄) +
n∑

i=1

∂J

∂ωi

(ωi − ω̄i), (5)

with the uncertain input parameters ω = (ω1, . . . , ωn) and their means ω̄ = (ω̄1, . . . , ω̄n). On
the basis of [5] statistical quantities of J like the mean value J̄ and its variance σ2

J which depend
among others on the variance σ2

ω of the input parameter, can be approximated by

J̄ = J(ω̄), σ2
J =

n∑
i=1

(
∂J

∂ωi

σωi
)2. (6)

The derivatives are evaluated at the mean values of the uncertain input ω̄. The relevant effort
to evaluate [6] arise in the computation of the derivatives. This can be done e.g. with the finite
difference method [4]. The FOSM is proposed for robust optimization in [2, 10, 11].
Compared to other methods the fast evaluation is the main advantage of the FOSM, but on
the other hand there are many drawbacks. Since it is a first order approximation non-linear
effects are not considered, so in practice the failure of the approximated statistical quantities
increase with growing input uncertainty. Similarly, the FOSM provides poorer results, the more
uncertain input parameter are taken into account.

4.2 Adaptive Stochastic collocation method

The stochastic collocation method belong to the nonintrusive methods. The idea is to de-
compose the stochastic problem into a finite number of deterministic problems, which can be
solved with common methods. A more detailed description is given by [1, 5].
The main steps of the ASCM are the selection of a set of possible realizations of uncertain input
parameters ω, the so-called collocation points. For each of this realizations the corresponding
PDE 2 has to be solved. These solutions are interpolated in order to achieve a continuous repre-
sentation of the random solution space. Subsequently, the interpolation error is estimated and if
needed more collocation points are added. The statistical quantities J̄ and σ2

J can be estimated
on the basis of the interpolated random solution space. In order to ensure adequately accurate
results while keeping the number of collocation points small, the collocation points can be lo-
cated on a sparse grid. Despite the adaptivity and the sparse grid realization, the computational
effort of the ASCM is a multiple larger than the effort of the FOSM. Nevertheless, the ASCM
has the advantage that a required accuracy can be ensured. The discrepancy between the ad-
vantage of accuracy and disadvantage of computational time compared to the FOSM increases
with the number of uncertain parameters.

5 NUMERICAL OPTIMIZATION METHOD

In this work we use the globalized bounded Nelder-Mead method (GBNM) for optimization.
The GBNM belongs to the class of iterative, gradient free optimization methods and is based
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Figure 1: 2D example of the transformations of a simplex.

on the Nelder-Mead algorithm (NMA) proposed by [12].
The key idea of this method is to initialize the simplex, a polyhedron with n+1 nodes in the

n-dimensional optimization space. The coordinates of each node represents a set of design
parameters. In the initialization for each set, the corresponding value of the objective function
is computed and assigned to the node. Subsequently, in every iteration the node with the worst
value is replaced by a better one until the simplex is contracted to the optimum. The substitution
is realized through reflection, contraction, expansion and shrinkage, which are illustrated in
Figure 1. There is no guarantee for convergence, but in practice, the method has proven to
be useful [3]. The initial radius of the simplex has a significant influence on the convergence
behavior [15]. If the radius is too large, many iterations are needed to converge. On the other
hand, if the radius is to small, the optimum might not be localized. The extension of NMA to
GBNM by [3] allows to take into account the lower and upper bounds of the design parameters.

6 HYBRID APPROACH

The idea of the proposed hybrid method is that the less computationally intensive but less
accurate FOSM is used in the beginning of the optimization for uncertainty quantification in
order to get a first rough estimation of the optimum. As soon as the optimizer begins to converge
the method for the uncertainty quantification is switched to ASCM and the optimizer starts from
this point with adapted parameters to determine a more precise (local) robust optimum. This is
a common procedure for hybrid optimizers [16, 15].
The aim of this approach is that fewer iterations of the expensive ASCM are needed to find the
robust optimum. This requires that an optimum which is localized by the FOSM is closer to a
real optimum than a randomly chosen start point.
A characteristic of GBNM is that the simplex determine the rough location of the optimum
quickly but needs many iterations and function evaluations in order to find an accurate one.
Therefore, in the first phase of the optimization, when the FOSM is used, the convergence
criterion is set relatively high. Thus, the computational costs of the expensive contraction of
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Figure 2: Shape of a NACA5320 airfoil.

the simplex are reduced. In the second part, the convergence criterion is set to the desired
value in order to determine the optimum sufficiently accurately. In addition, a small radius for
the initialization of the simplex is chosen. This can reduce the number of iterations until the
simplex converges, but only if the simplex is already close to an (local) optimum. Otherwise,
the movement through the search space towards a minimum becomes very slow.

7 TEST CASE

7.1 Numerical framework

As flow solver we utilize our in-house flow solver FASTEST [13]. The software uses a
fully conservative finite-volume method in order to discretize the incompressible Navier-Stokes
equations [4]. The discretized system is solved by an iterative pressure-correction procedure
with a SIP solver for inner iterations. The implementation of the ASCM is based on the work
of Bettina Schieche [1] and written in MATLAB. For the generation of sample points on the
sparse grid the Smolyak algorithm is used and combined with Gauss-Patterson-Legendre nodes.
The interpolation of the random parameter space is done with Lagrange interpolation. The
derivatives of the objective function in FOSM are calculated with a finite difference method.

7.2 Problem description

In order to analyze the performance of the presented hybrid robust optimization approach, we
investigate a 2-d flow around an airfoil at low Reynolds numbers. The basis of this test case is an
airfoil of the NACA 4-digit series as shown in Figure 2. This type of airfoil is described by three
shape parameters. These are the maximum camber position cpos, the maximum camber cmax

and the thickness t of the airfoil. The parameter values are specified in percents of the chord, as
defined in [14]. The modeled flow region and the detail of an airfoil is shown in Figure 3. At
the curved inlet and on the airfoil surface Dirichlet boundary conditions are applied. Neumann
boundary conditions are used at the outlet. For this purpose, it was ensured that the distance
between the outlet and the airfoil is sufficiently large. A mirror boundary condition is set to
the upper and lower boundaries. For this it is guaranteed that near to these areas the fluid flows
only in x-direction. The domain has a total length of 32m and a height of 24m. The distance
between the leading and trailing edge of the airfoil is 1m. The fluid is imaginary with a density
ρ = 1kg/m3, a dynamic viscosity η = 1kg/(ms) and a Reynolds number Re = 100. The flow
field is divided into 10 structured blocks and is discretized with 30,720 control volumes. The
objective function J of the optimization problem (4) is defined as

J = (cd − c∗d)2 + (cl − c∗l )2, (7)
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Figure 3: Flow region and detail view of the NACA5320 test case.

where cd and cl are the drag and lift coefficients of the airfoil. c∗l and c∗d are predefined values
and both are set to 0.5. The vector of design parameter is a = cpos, cmax, t with the lower and
upper bounds al = 0.1, 0.1, 0.1 and au = 0.8, 0.8, 0.4. The test case has up to five uncertain
parameters, the three shape parameters of the NACA airfoil and the inlet velocity vin and the
angle of attack α. These parameters are assumed to be normally distributed. The coefficient of
the variation is set to 0.1. For the performance analysis of the hybrid method the optimization
is done several times with different uncertain parameters that are taken into account. For each
combination of uncertain parameters, multiple starting points for the optimization are used. The
combinations of uncertain parameters that are used are given in Table 1. In order to compare

Name Uncertain parameters
TS1 vin
TS2 α
TS3 vin, α
TS4 cmax, cpos, t
TS5 vin, α, cmax, cmin, t

Table 1: Overview of the test case configurations and which parameters are treated as uncertain.

the results each problem is additionally calculated with a pure ASCM. The comparison is made
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with respect to the computational time as well as the reduction of the objective function.

7.3 RESULTS

All combinations of uncertain parameters that are provided in Table 1 are examined. For
each combination several robust optimizations runs with different starting points are executed
in order to consider the influence of the (random) choice of the starting points. The ranges of
the results are illustrated in Figure 4, represented as box plots with whiskers from minimum to
maximum. Figure 4a shows the results with respect to the computational time relative to the
time of an optimization using a pure ASCM. This means the values below 100% indicates that
the hybrid approach needs less time. Figure 4a illustrates the resulting reduction of the robust
objective function. The reduction is defined as

r =
(J0 − J∗)

J0
, (8)

where J0 is the value of the robust objective function at the starting point and J∗ is the value
at the optimum. Both values are calculated with the ASCM. Again the results of the hybrid
approach are relative to the results of an optimization with pure ASCM. For the test TC1, where
only the inlet velocity vin is treated as uncertain, the results show that the hybrid approach
needs in average less time for the optimization. The median is 81%. Only the upper whisker
exceeds the 100% mark to 105%. In addition to the optimization time, the reduction of the
objective function is for all start points near to 100%, since the lower and upper quartils are
98% and 101%. For TC2 the median of the computational time is 97% and therefore slightly
faster than a pure ASCM, but the upper quartil is 109%. This means that for this configuration
more than 25% of the optimization runs with the hybrid approach require more than 9% more
time. The targeted reduction of the objective function to 100% is only achieved with 25% of the
chosen starting points. The consideration of more than one uncertain parameter is realized in
TC3-5. In all three configurations the difference to the computational time of the pure ASCM
optimization cover a large range of more than 50%. No median reaches a desired value lower
than 100%. The worst result is provided by TC5, where 25% of the optimization runs requires
more than 1.5 times the time of the pure ASCM. Examining the results of TC3-5 in Figure
4b, it is noticable that each lower quartil is below the 100% mark and therefore worse than
the non-hybrid solution. Based on these results it can be asserted that the hybrid approach
is not advantageous for non-trivial flow problems. The reason for this is that approximations
of statistical quantities through FOSM are too inaccurate. The consequence is that a robust
optimization using this method converges to a random point, which is not necessarily close to
a (local) optimum. Thus, in the second part of the optimization the simplex radius is adjusted
based on false assumptions. Due to this unfavorable choice of the parameters the convergence
behavior is negatively effected ([15]).

8



C.Thiem, M. Schäfer
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Figure 4: Results of optimization with the hybrid approach in relation to an optimization with
pure ASCM. The results for all used start points of the different configurations (TC1-5) are
grouped in box plots with minimum and maximum values as whiskers. (a) show the resulting
relative optimization times and (b) the relative amount of the reduction of the robust objective
function J .

8 CONCLUSIONS

A hybrid robust optimization method has been presented. We introduced the basics for flow
problems under uncertainty. Furthermore, we described the general idea of robust optimization.
Two methods for uncertainty quantification were presented, the First Order Second Moment
method as well as the adaptive stochastic collocation method. Furthermore, the gradient free
optimization method GBNM was introduced. Subsequently, the idea of the combination of
FOSM, ASCM and GBNM to a hybrid optimization scheme was presented. This scheme was
applied to a 2-dimensional flow test case of a NACA airfoil. In several tests different com-
binations of uncertain parameters were considered during the robust optimization. The results
showed that the hybrid approach is not suitable. Only for one simple configuration the approach
achieved satisfactory results. In all other tests the hybrid optimization is even worse than a pure
ASCM with random starting points. Due to the linear properties of the FOSM this approach
is limited to very smooth problems. Otherwise in the first part of the optimization the FOSM
propose a random point as a starting point for the second part. If this point is not close to an
optimum, the adaption of the simplex radius has a negative effect on the convergence.
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