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Abstract. High-order discretization methods offer the potential to reduce the compu-
tational cost associated with modelling compressible flows. However, it is difficult to
obtain accurate high-order discretizations of conservation laws that do not produce spuri-
ous oscillations near discontinuities, especially on multi-dimensional unstructured mesh.
To overcome this issue, a novel, high-order, central essentially non-oscillatory (CENO)
finite-volume method was proposed for tetrahedral mesh. The proposed unstructured
method is vertex-based, which differs from existing cell-based CENO formulations, and
uses a hybrid reconstruction procedure that switches between two different solution repre-
sentations. It applies a high-order k-exact reconstruction in smooth regions and a limited
linear one when discontinuities are encountered. Both reconstructions use a single, cen-
tral stencil for all variables, making the application of CENO to arbitrary unstructured
meshes relatively straightforward. The new approach was applied to the conservation
equations governing compressible flows and assessed in terms of accuracy and computa-
tional cost. For all problems considered, which included various function reconstructions
and idealized flows, CENO demonstrated excellent reliability and robustness. High-order
accuracy was achieved in smooth regions and essentially non-oscillatory solutions were
obtained near discontinuities. The high-order schemes were also more computationally
efficient for high-accuracy solutions, i.e., they took less wall time than the lower-order
schemes to achieve a desired level of error.

LANL report no. LA-UR-14-22349

1



M.R.J. Charest, T.R. Canfield, N.R. Morgan, J. Waltz and J.G. Wohlbier

1 INTRODUCTION

Finite-volume methods are a popular discretization technique for computational fluid
dynamics, especially for compressible flows. Numerous formulations exist, and one of the
main differing characteristics is the approach used to discretize the computational domain.
Either cell- or vertex-based discretizations are typically employed. Cell-based approaches
apply conservation laws to the individual elements or cells of the mesh, whereas vertex-
based approaches apply them to control volumes constructed surrounding the vertices
of the mesh. The choice is not always straightforward, since both techniques are widely
used and both have their respective advantages/disadvantages. For example, vertex-based
schemes are often favored for use with unstructured tetrahedral mesh since there is approx-
imately 5 to 6 times fewer vertices than elements. But because there are more elements
than vertices in a tetrahedral mesh, cell-based schemes have more degrees of freedom. As
such, cell-based schemes tend to be slightly more accurate on tetrahedral meshes, although
this increased accuracy comes at the expense of additional computational effort [1]. The
direct comparison between the two types of schemes is complicated, however, because
they both use different stencils. The larger, denser stencils that vertex-based schemes
are more robust and accurate per degree of freedom, which may make vertex centered
schemes more computationally efficient for a given accuracy [1]. Nonetheless, whatever
the chosen finite-volume formulation, current production codes rely mostly on standard
first- or second-order accurate discretization schemes. These discretizations are often not
practical for physically-complex, multi-dimensional flows with disparate scales as they
tend to exhibit excessive numerical dissipation.

High-order discretization methods for conservation laws have the potential to signif-
icantly reduce the cost of modelling physically-complex flows. They offer improved nu-
merical efficiency to obtain high-resolution solutions since fewer computational cells are
required to achieve a desired level of accuracy [2]. However, this potential is challenging
to fully realize as it is difficult to obtain accurate and robust discretizations of hyperbolic
conservation laws near discontinuities [3]. Although there are many different high-order
schemes for both structured and unstructured mesh that attempt to address this issue [3–
31], there is still no consensus on a robust, efficient, and accurate scheme that deals with
the aforementioned issues and is universally applicable to arbitrary meshes.

One promising high-order discretization is the central essentially non oscillatory (CENO)
finite-volume approach [32–40]. It was originally developed for two-dimensional structured
mesh by Ivan et al. [36–40] and then extended to three-dimensional unstructured mesh
by Charest et al. [32–35]. In all formulations, CENO remained both accurate and robust
throughout a variety of physically-complex flows. This robustness is provided by a hybrid
reconstruction procedure that switches between two algorithms: an unlimited high-order
k-exact reconstruction in smooth regions, and a monotonicity-preserving limited piecewise
linear reconstruction in regions with discontinuities or shocks. Switching between the two
reconstructions is facilitated by a smoothness indicator that measures the ability of the
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of the k-exact reconstruction to locally resolve the flow. Fixed central stencils are used
for both reconstruction algorithms, which makes its extension to arbitrary unstructured
meshes straightforward.

The CENO approach avoids many of the complexities associated with other essentially
non-oscillatory (ENO) [3] and weighted ENO (WENO) [8, 10, 11] finite-volume schemes
because it does not require a high-order reconstruction on multiple stencils. Both ENO
and WENO schemes have difficulty selecting stencils on general multi-dimensional un-
structured meshes [5, 6, 9, 41], and some of these stencils produce poorly conditioned
linear systems for solution reconstruction [9, 41].

The existing CENO formulations for structured [36–40] and unstructured [32–35] meshes
were developed for cell-based finite-volume schemes only. In the present research, CENO
was extended to a vertex-based finite-volume discretization for three-dimensional unstruc-
tured mesh and applied to solve the equations governing compressible flows. The resulting
algorithm was applied to various function reconstructions, as well as steady and unsteady
flows, and then analyzed with respect to accuracy and computational cost. This research
was performed using Chicoma, a computational framework for compressible fluid flow,
i.e., shock hydrodynamics [42]

2 GOVERNING EQUATIONS

The Euler equations governing compressible fluid flow were considered for the present
research. In three space dimensions, these partial-differential equations (PDEs) are given
by

∂

∂t
U(W) + ~∇ · ~F(W) = S(W) (1)

where t is the time, U and W are the vectors of conserved and primitive variables,
respectively, ~F(W) = [E,F,G] is the inviscid solution flux dyad, and S(W) is a vector
of source terms. These terms are defined as

U =
[
ρ, ρu, ρv, ρw, ρet

]
,

W =
[
ρ, u, v, w, e

]
,

E =


ρu

ρu2 + p
ρuv
ρuw

u(ρet + p)

 , F =


ρv
ρvu

ρv2 + p
ρvw

v(ρet + p)

 , G =


ρw
ρwu
ρwv

ρw2 + p
w(ρet + p)


where ρ is the fluid density, p is the pressure, ~v = (u, v, w) is the fluid velocity vector, e is
the internal energy, and et is the total energy. The total energy is the sum of the internal
and kinetic energies, i.e.,

et = e+
1

2
(u2 + v2 + w2) (2)
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Vertex

(a) Primal and dual mesh (shown in two-dimensions
for simplicity).

(b) Example of a three-
dimensional control volume.

Figure 1: Computational mesh and local control volume configuration.

Internal energy is related to pressure and density through the following relation for an
ideal gas:

e =
p

ρ(γ − 1)
(3)

where γ is the ratio of specific heats. The sound speed of an ideal gas is given by

a =
√
γp/ρ (4)

Although Eqs. (3) and (4) describe an ideal gas, the numerical formulation described
herein is designed to support arbitrary analytic or tabular equations of state. Unless
otherwise specified, γ = 1.4.

The source term vector, S, is typically treated as zero throughout this work. There is
one particular case — which will be discussed in the following sections — where it was
used to generate a known solution for validation purposes.

3 CENO FINITE-VOLUME SCHEME

In the proposed vertex-based finite-volume approach, the physical domain, Ω, was
discretized into non-overlapping, finite-sized control volumes, Ωi, such that

Ω = ∪Ωi (5)

Ωi ∩ Ωj for i 6= j (6)

The individual control volumes were formed by constructing the median dual, D(Ω),
of a three-dimensional triangulation of the domain, T (Ω), which is illustrated in two-
dimensions in Fig. 1a. Only primal meshes composed of tetrahedral elements were con-
sidered, and they have a corresponding dual mesh composed of complex polyhedrons with
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Table 1: Gauss quadrature rules used for integrating over triangles and tetrahedrons.

Reconstruction Number of Points Degree of Precision

Triangle Tetrahedron

Constant (k=0) 1 1 1

Linear (k=1) 1 1 1

Quadratic (k=2) 3 4 2

Cubic (k=3) 4 8 3

Quartic (k=4) 6 14 4

triangular faces. A control volume surrounding a vertex i, Ωi, was constructed from the
polyhedron whose vertices are the centroids of incident tetrahedra and triangles, plus the
midpoints of incident edges. A sample control volume surrounding an individual vertex
in a three-dimensional tetrahedral mesh is illustrated in Fig. 1b.

Equation (1) was integrated over each individual control volume to give the following
system of ordinary differential equations (ODEs) for control-volume-averaged solution
quantities, Ui:

dUi

dt
= − 1

Vi

∮
∂Ωi

(
~F · n̂

)
dΓ +

1

Vi

∫
Ωi

S dΩ = Ri, i = 1, 2, . . . , Nv (7)

where Nv is the number of control volumes (i.e., vertices of the primal mesh), Vi is the
volume and n̂ is the unit vector normal to the surface of the control volume, ∂Ωi. Applying
Gauss quadrature to evaluate the surface and volume integrals in Eq. (7) produces a set
of nonlinear ODEs given by

dUi

dt
= − 1

Vi

Nf∑
j=1

Gf∑
k=1

[
ωf
~F · n̂

]
i,j,k

+
1

Vi

Gv∑
m=1

[ωv S]i,m = Ri (8)

where Nf is the number of faces, Gf and Gv are the number of quadrature points and
ωf and ωv are the corresponding quadrature weights for the face and volume integrals,
respectively.

In Eq. (8), the number of quadrature points required for each rule is a direct function
of the number of spatial dimensions and the reconstruction order — i.e., the quadrature
rule must be able to integrate a k-degree polynomial exactly (k-exactness). Integrating
over the individual faces of the polyhedral-shaped control volume is relatively straightfor-
ward. Since the faces are triangular, standard quadrature rules for triangles were used.
However, general quadrature rules for integrating over complex polyhedrons do not exist.
As such, numerical integrals over the volume of these complex elements were evaluated by
subdividing the polyhedrons into tetrahedrons and applying standard Gauss quadrature
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rules to each individual tetrahedron. The coefficients for the quadrature rules applied
herein are as given by Felippa [43] and summarized in Table 1.

3.1 CENO Reconstruction

Evaluating Eq. (8) requires numerically integrating the fluxes and source terms over
the control-volumes, and this numerical integration requires interpolating the solution at
quadrature points. Only control-volume averages are known in the proposed finite-volume
approach, so the solution at these quadrature points was interpolated using the high-
order CENO method [32–40]. The reconstruction was applied to the primitive solution
quantities, W, to ensure that both pressure and internal energy remain positive.

3.1.1 k-Exact Reconstruction

The CENO spatial discretization scheme is based on the high-order k-exact least-
squares reconstruction technique of Barth [4, 44]. The k-exact reconstruction algorithm
begins by assuming that the solution within each control-volume is represented by piece-
wise Taylor polynomials. In three space dimensions, the polynomials are defined as

uki (x, y, z) =

p+q+r≤k∑
p=0

∑
q=0

∑
r=0

(x− xi)p(y − yi)q(z − zi)rDpqr (9)

where uki is the reconstructed solution quantity, (xi, yi, zi) is the geometric reference
point, k is the degree of the piecewise polynomial interpolant, and Dpqr are the unknown
coefficients of the Taylor series expansion. Any geometric reference point can be chosen;
the vertex about which the control volume is constructed was used here.

The following conditions were applied to determine the unknown coefficients: (i) the
mean or average value within the computational volume must be preserved; (ii) the solu-
tion reconstruction must reproduce polynomials of degree ≤ k exactly (i.e., k-exactness);
and (iii) the reconstruction must have compact support. The first condition introduces a
constraint on the reconstruction which states that

ui =
1

Vi

∫
Ωi

uki (x, y, z) dΩ (10)

where ui is the control-volume average in Ωi. Additional constraints are introduced by
the second condition, requiring that

uki (x, y, z) = uexact +O(hk+1) (11)

in the vicinity of Ωi. The length scale, h, is defined as the maximum diameter of the
control-volume circumspheres in the vicinity of Ωi. From Eq. (11), the reconstruction
polynomial for Ωi must also recover the averages of neighboring control volumes. That is,

uj =
1

Vj

∫
Ωj

uki (x, y, z) dΩ +O(hk+1) ∀j ∈ Sneigh,i (12)
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1st neighbor

2nd neighbor

Ωi

Figure 2: Supporting stencil for the reconstruction in Ωi. First- and second-level neighbors are indicated
in the figure.

where Sneigh,i is the collection of control-volume indices in the vicinity of Ωi. This prop-
erty ensures that the difference between the predicted solution states at control-volume
interfaces diminishes at a rate proportional to hk+1.

The third condition merely specifies the number and location of neighbors included in
the reconstruction. For a compact stencil, the minimum number of neighbors is equal to
the number of unknowns minus one (because of the constraint imposed by Eq. (10)). For
any type of mesh, the total number of unknown coefficients for a particular order is given
by

N =
1

d!

d∏
n=1

(k + n) (13)

where d represents the number of space dimensions. In three-dimensions, there are four,
ten, twenty and thirty-five unknown coefficients for k=1, k=2, k=3 and k=4, respectively.

A sample stencil for Ωi is illustrated in two-dimensions in Fig. 2. The stencil was
constructed by recursively selecting nearest neighbors until at least the minimum number
of neighbors was met. The closest neighbors were selected first, and then, if more neighbors
were required, the next nearest neighbors were selected. This process continued until the
stencil was deemed sufficient. Additional neighbors were typically included to ensure that
the stencil was not biased in any particular direction and that the reconstruction remained
reliable on poor quality meshes with high aspect ratio cells [44]. In the present research,
a stencil at least 1.5 times larger than the minimum size was employed. The employed
stencil sizes are listed in Table 2.

The constraints given by Eqs. (10) and (12) create an over-determined system of linear
equations of the form,

AX = B (14)

where A is the coefficient matrix, X is the vector of unknown polynomial coefficients,
and B is a vector which depends on control volume averages. Since the system is over-
determined, a least-squares solution for X was obtained in each control-volume. Equa-
tion (10) must be strictly enforced, while a minimum-error solution to the remaining
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Table 2: Minimum stencil sizes used for reconstructions.

Reconstruction Minimum Stencil Size

Theoretical Actual

Linear (k=1) 3 5

Quadratic (k=2) 9 14

Cubic (k=3) 19 29

Quartic (k=4) 34 51

constraint equations was sought. The final form of Eq. (14) for each control volume i was
derived from Eqs. (10) and (12). It is given by

w1i x̂0y0z1
1i · · · w1i x̂pyqzr1i · · · w1i x̂ky0z0

1i
...

...
...

wji x̂0y0z1
ji · · · wji x̂pyqzrji · · · wji x̂ky0z0

ji
...

...
...

wni x̂0y0z1
ni · · · wni x̂pyqzrni · · · wni x̂ky0z0

ni


·


D001

...
Dpqr

...
Dk00

 =


w1i (u1 − ui)

...
wji (uj − ui)

...
wni (un − ui)

 (15)

where n is the number of neighbors in the stencil, Sneigh,i, and wji are least-squares weights.

The geometric coefficients, x̂pyqzrji, are given by

x̂pyqzrji = x̃pyqzrji − xpyqzri (16)

where

x̃pyqzrji =
1

Vj

∫
Ωj

(x− xi)p(y − yi)q(z − zi)r dΩ (17)

xpyqzri =
1

Vi

∫
Ωi

(x− xi)p(y − yi)q(z − zi)r dΩ (18)

Only the geometric moments about each individual control-volume, xpyqzri, were stored
prior to solving Eq. (8). The remaining geometric coefficients were computed using a
binomial expansion [10, 12]:

x̃pyqzrji =
1

Vj

∫
Ωj

[(x− xj) + (xj − xi)]p · [(y − yj) + (yj − yi)]q · [(z − zj) + (zj − zi)]r dΩ

(19)

=

p∑
a=0

q∑
b=0

r∑
c=0

(
p

a

)(
q

b

)(
r

c

)
· (xj − xi)a · (yj − yi)b · (zj − zi)c · xp−ayq−bzr−cj

(20)
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Weighting was applied to each individual constraint equation to improve the locality
of the reconstruction [45]. The weights for the reconstruction in Ωi are

wji =
1

|~xj − ~xi|p
, (21)

where ~xi and ~xj are the vertex locations. The exponent, p, was set equal to 1.
The condition of the least-squares problem for the reconstruction coefficients was im-

proved via the application of a simple column scaling [10, 46], which effectively makes the
condition number independent of the mesh size and control-volume aspect ratio. Scaling
the columns of the matrix A gives the new linear system

(AP)
(
P−1X

)
= B (22)

where P is a diagonal matrix of size N − 1 whose entries are the inverse of the largest
absolute values of each column of A. The scaling matrix is given by

Pjj =
1

max
∀i
|Aij|

i = 1, 2, . . . , n (23)

where Pjj and Aij are the individual elements of P and A, respectively.
A least-squares solution to Eq. (22) was sought using either QR factorization based

on Householder transformations or the singular value decomposition (SVD) method [47].
Since the coefficient matrix, A, and the scaling matrix, P, only depend on the mesh
geometry, they can be inverted and stored prior to solving Eq. (8) [37]. Thus, when
SVD was used, the pseudoinverse was stored and polynomial coefficients were simply
determined from the following matrix-vector product at each iteration:

X = P (AP)†B (24)

where † denotes the pseudoinverse and the matrix P (AP)† is the pre-computed and
stored result of SVD. This operation was considerably less computationally intensive
than performing a full QR factorization or SVD decomposition for each control-volume
at every iteration. Once the least-squares solution for X in Eq. (22) was obtained, the
remaining polynomial coefficient, D000, was obtained from Eq. (10).

3.1.2 Reconstruction at Boundaries

To enforce conditions at the boundaries of the computational domain, the least-squares
reconstruction was constrained at Gauss quadrature points along the boundary without
altering the reconstruction’s order of accuracy [12, 13, 37]. The constraints were imple-
mented as Robin-type boundary conditions and are given by

f (~x) = a (~x) fD (~x) + b (~x) fN (~x) (25)
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where a (~x) and b (~x) are coefficients which define the contribution of the Dirichlet,
fD (~x), and Neumann, fN (~x), components, respectively. These coefficients are simply
(a, b) = (1, 0) for Dirichlet- and (a, b) = (0, 1) for Neumann-type boundary conditions.
The Dirichlet condition is expressed as

fD (~xg) = uk (~xg) (26)

where ~xg is the location of the Gauss quadrature point. The Neumann condition is

fN (~xg) = ~∇uk (~xg) · n̂g

=

p+q+r≤k∑∑∑
p+q+r=1

∆xp−1∆yq−1∆zr−1 [p∆y∆znx + q∆x∆yny + r∆x∆ynz]Dpqr

(27)

where ∆(·) = (·)g− (·)i is the distance between the vertex of the control volume adjacent
to the boundary and the Gauss quadrature point, and n̂g is the outward surface normal
at the quadrature point.

Exact solutions to the boundary constraints described by Eq. (25) were sought, which
adds linear equality constraints to the original over-determined system (Eq. (15)). This re-
sulting equality-constrained least-squares problem was solved using the method of weights [47].
It was solved in the same manner as described in Section 3.1.1, except the original equa-
tions in Eq. (15) were multiplied by an additional weight. The new over-determined linear
system with boundary constraints is given by[

εA
C

]
·
[
X
]

=

[
εB
D

]
(28)

where C and D are the coefficient matrix and solution vector for the boundary constraints,
respectively. A weight, ε, equal to 10−3 was applied to the original equations defined by
Eq. (15), which gives the boundary constraints a large influence.

For boundary conditions where the reconstructed variables are not related, such as
inflow/outflow or farfield-type conditions, the constraints were applied separately to each
variable. Thus, a separate least-squares problem with equality constraints was set up for
each variable and solved independently of the others. More complex boundary conditions
involve linear combinations of solution variables that couple the reconstruction coefficients
of different variables. For example, the individual velocity components for reflection or
solid wall conditions are coupled because ~v · n̂ = 0. These types of coupled boundary
conditions were handled via constraints — which requires reconstructing all variables
together — in combination with an appropriately prescribed flux [12, 13, 38, 48].

For coupled boundary conditions, the unknown polynomial coefficients for the uncou-
pled variables were determined independently first, and then the coupled variables were

10
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reconstructed together. To illustrate this procedure, consider a reflection boundary con-
dition, which was applied in the present study. Along reflecting boundaries,

~∇ρ · n̂ = 0

~v · n̂ = 0

~∇e · n̂ = 0

where n̂ is a unit vector normal to the boundary. Both ρ and e are independent, so they
were reconstructed separately by solving Eq. (28), but the three components of velocity
are coupled via a linear combination of each other. The constraints for a zero normal
velocity at the boundary are given by

u (~xg)nx (~xg) + v (~xg)ny (~xg) + w (~xg)nz (~xg) = 0 (29)

As such, the coupled, over-determined linear system for the unknown polynomial coeffi-
cients of the three velocity components is as follows:

εAu 0 0

Cu 0 0

0 εAv 0

0 Cv 0

0 0 εAw

0 0 Cw

Coupled constraints, Eq. (29)


·

Xu

Xv

Xw

 =



εBu

Du

εBv

Dv

εBw

Dw

0


(30)

where the subscripts u, v, and w refer to the solution quantities with which the components
of the linear system are associated with.

The prescribed flux at each quadrature point along the reflecting boundary is

Freflect = [0, pnx, pny, pnz, 0] (31)

where p is calculated at the wall boundary by extrapolating ρ and e.
Solid walls were treated the same as reflecting boundaries, except that no constraints

were applied to ρ and e along the boundary, i.e., only ~v · n̂ = 0 was enforced.

3.1.3 Smoothness Indicator

After performing a k-exact reconstruction in each control volume, the smoothness in-
dicator was computed for every reconstructed variable to identify under-resolved solution
content. It was evaluated as [38]

S =
σ

max [(1− σ), δ]

SOS−DOF

DOF− 1
(32)
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where σ is a smoothness parameter, δ is a tolerance to avoid division by zero (equal to
10−8), DOF is the number of degrees of freedom and SOS is the size of the stencil. The
factor, (SOS − DOF)/(DOF − 1), adjusts σ to account for the number of polynomial
coefficients relative to the size of the reconstruction stencil.

The smoothness parameter is based on the coefficient of determination or R2 param-
eter, which is a statistical parameter used for assessing how well lines or curves fit data
points [49]. For a control-volume Ωi, the smoothness parameter is given by

σ = 1−

∑
∀j∈Sneigh,i

[
ukj (~xj)− uki (~xj)

]2
∑

∀j∈Sneigh,i

[
ukj (~xj)− ui

]2 (33)

where u is the solution variable of interest. The numerator of the fraction in Eq. (33)
measures how well the reconstruction polynomial for Ωi predicts the values in nearby
control volumes, while the denominator in Eq. (33) measures the variance from some
reference point — ui in this case — and normalizes σ.

By definition, σ can have a value between negative infinity and one. A value of unity
indicates that the solution is smooth whereas a small or negative value indicates large
variations in solution content within the reconstruction stencil. An order of magnitude
analysis, similar to the ones performed by Ivan and Groth [39] and Charest et al. [35] for
cell-based CENO formulations, confirms the correct behavior of σ with changes in mesh
size, h. It follows from Eq. (11) that

σ ≈ 1−
[
O(hk+1)

]2
[O(h)]2

≈ 1−O(h2k) (34)

for smooth solution content, so σ → 1 as ∆x → 0 at a rate much faster than the formal
order of accuracy of the scheme. Conversely, when the solution is not smooth, σ is much
less than unity because

σ ≈ 1− [O(1)]2

[O(1)]2
≈ 1−O(1) (35)

Solutions were deemed smooth when the value of S was above a critical value, Sc.
Previous studies found that values for Sc between 1000–5000 provided an excellent balance
between stability and accuracy [38]. And because of the form of Eq. (32), S grows rapidly
as σ → 1, so S tends to be orders of magnitude greater than these cutoff limits in smooth
regions. Unless otherwise specified, Sc was equal to 4000.

In cases where the solution was not varying, such as in the free-stream, the smooth-
ness indicator sometimes incorrectly indicated that solutions with small deviations due
numerical noise were under-resolved. This occurred because both the denominator and
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numerator of the fraction in Eq. (33) approached zero, and σ was close to zero or nega-
tive. To alleviate this issue, the solution was automatically deemed smooth if the local
variation within the stencil was below a tolerance. That is, if

max
∀j∈Sneigh,i

|uj − ui| < tabsuref + trelustencil, (36)

the smoothness indicator was not computed and the high-order k-exact reconstruction
was used. Here, uref is a reference solution, ustencil is the stencil average, tabs = 10−5 is an
absolute tolerance, and trel = 10−3 is a relative tolerance. The reference solution, uref, was
the average value within the computational domain and was only computed once prior to
solving the governing ODEs given by Eq. (8).

3.1.4 Limited Piecewise Linear Reconstruction

In regions where the smoothness indicator was below the critical value, monotonicity
was preserved by switching to a limited piecewise linear (k=1) reconstruction on a smaller
stencil (see Table 2). The least-squares reconstruction procedure described by Barth [50]
was used in these regions, since it was found to be more computationally efficient than
directly solving Eq. (15) via QR factorization or SVD.

The limited piecewise linear representation in each control volume is given by

uk=1 (~x) = ui + φi~∇u · (~x− ~xc,i) (37)

where φi is the slope limiter and ~xc,i is the location of the control-volume centroid. In this
particular case, k=1, the control-volume-averaged solution is equal to the solution at the
centroid, not the solution at the control volume’s associated vertex. The two locations do
not coincide with each other, i.e., ~xc,i 6= ~xi.

The new over-determined matrix equation for the solution gradients in Ωi is given by


wi1∆xi1 wi1∆yi1 wi1∆zi1

...
...

...
wij∆xij wij∆yij wij∆zij

...
...

...
win∆xin win∆yin win∆zin

 ·



∂u

∂x

∂u

∂y

∂u

∂z


=


wi1 (u1 − ui)

...
wij (uj − ui)

...
win (un − ui)

 (38)

where ∆(·)ij = (·)j − (·)i is the distance between control volume centroids. This system
was solved in a least-squares sense using the Gram-Schmidt process outlined in [50].

Uncoupled Dirichlet- and Neumann-type boundary conditions were incorporated by
adding constraint equations to Eq. (38) for each quadrature point:

Dirichlet: ~∇u ·∆~xi = u (~xg)− ui (39)

Neumann: ~∇u ·∆~xn = ~∇u (~xg) ·∆~xn (40)
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where ∆~xi = ~xg − ~xc,i and ∆~xn = (∆~xi · n̂g)n̂g. More complicated boundary conditions
were treated using ghost cells to influence the reconstruction. For example, reflecting
boundaries or solid walls were treated by reflecting the solution at the control volume’s
centroid about the boundary and injecting the reflected solution into the ghost cell.

Limiting was performed using the multi-dimensional limiting process (MLP) developed
by Park et al. [51] in conjunction with the slope limiter function of Venkatakrishnan
[52]. Although MLP was developed specifically for cell-based finite-volume schemes on
structured and unstructured mesh, it is easily extended to vertex-based formulations. The
general form of the MLP condition states that monotonicity is preserved if the following
condition is true for every vertex vj of a control-volume Ωi:

umin
i,neigh ≤ uvj ≤ umax

i,neigh ∀vj ∈ Ωi (41)

where uvj is the interpolated value at the vertex vj, and umin
i,neigh and umax

i,neigh are the minimum
and maximum control-volume-averaged values among the control-volumes that share a
vertex with Ωi, respectively. Essentially, the interpolated values at the vertices of the
control volume must be bounded by the maximum and minimum u of the surrounding
control volumes. These vertices, vj, are the vertices of the dual mesh, D(Ω), not the
primal mesh, T (Ω).

The final MLP slope limiter for the ith control volume is expressed as

φi = min
∀vj∈Ωi



Φ

(
umax
i,neigh − ui
uvj − ui

)
if uvj − ui > a,

Φ

(
umin
i,neigh − ui
uvj − ui

)
if uvj − ui < −a,

1 otherwise

(42)

where Φ is the Venkatakrishnan limiter function and a = 10−7 is tolerance to avoid limiter
chatter caused by numerical noise.

3.2 Numerical Flux and Sources

An upwind Godunov-type scheme was used to integrate the inviscid numerical flux, ~F,
over the control-volume [53]. Given the left and right solution states, WL and WR, the
numerical flux at the interface between two control-volumes is defined as

~F · n̂ = F (WL,WR, n̂) (43)

where F is a flux function which solves a Riemann problem in a direction aligned along the
face normal, n̂. Both the Rusanov [54, 55] and HLL [56] approximate Riemann solvers
were implemented for the numerical flux, F . The HLL flux function was found to be
slightly more accurate while the Rusanov flux provided additional stability.
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The left and right solution states at the interface were determined using the k-exact
reconstruction procedure described in Section 3.1. As a result, the leading truncation
error due to the inviscid operator is O

(
hk+1

)
in smooth regions. When the solution is

under-resolved and deemed not smooth, the limited piecewise linear reconstruction was
used and the truncation error of the inviscid operator is between O (h2) (unlimited) and
O (h) (limited).

The limited linear reconstruction of Section 3.1.4 is only applied in non-smooth regions
to the inviscid terms in Eq. (8). The source terms are still evaluated using the higher-order
representation since they don’t generally generate instabilities. Thus, the truncation error
of the source term operator is O

(
hk+1

)
.

3.3 Transient Continuation and Steady-State Relaxation

Equation (8) defines a finite set of ODEs. For unsteady problems, the temporal deriva-
tive was discretized using the classic fourth-order Runge-Kutta (RK4) scheme [57]. This
four-stage RK scheme is written as

U1 = Un +
∆t

2
Rn (44a)

U2 = Un +
∆t

2
R1 (44b)

U3 = Un + ∆tR2 (44c)

Un+1 = Un +
∆t

6

(
Rn + 2R1 + 2R2 + R3

)
(44d)

where the superscript n denotes the time level.
Steady-state problems where relaxed using the two-stage optimally smoothing scheme

of Van Leer et al. [58].

Un+1 = Un +
ns∑
α=1

βα∆tRα (45)

where ns = 2 is the number of stages, the superscript α denotes the intermediate stage,
and βk are the stage coefficients.

In both cases, steady and unsteady, the time step was determined by considering the
inviscid Courant-Friedrichs-Lewy (CFL) stability criteria. The maximum permissible time
step for each control volume is given by

∆ti = CFL ·
(

∆i

‖~vi‖+ ai

)
, i = 1, 2, . . . , Nv (46)

where ∆i = 3
√
Vi and CFL is a constant greater than zero. Time-accurate problems use a

global time step given by
∆t = min

∀i
∆ti (47)
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4 RESULTS FOR THREE-DIMENSIONAL UNSTRUCTURED MESH

The proposed finite-volume scheme was assessed in terms of accuracy, stability, and
computational efficiency. Numerical results for smooth and discontinuous function re-
constructions, as well as steady and unsteady idealized flows, were obtained on three-
dimensional unstructured tetrahedral mesh. All computations were performed on an HP
DL980 G7 compute node with eight Intel Xeon X6550 (2.00GHz) processors and 128 GB
of random-access memory (RAM).

Depending on the problem, accuracy was assessed based on the L1, L2, and/or L∞
norms of the error between the exact solution and the numerical solution. The Lp norm
of the error evaluated over the entire computational domain is given by

Lp = ‖Error‖p =

[
1

VT

Nv∑
i

∫
Ωi

∣∣uki (~x)− uexact(~x)
∣∣p dΩ

]1/p

(48)

where VT is the total volume of the domain and uexact(~x) is the exact solution. This
integration is performed using the adaptive cubature algorithm developed by Berntsen
et al. [59] for integrating functions over a collection of three-dimensional simplices.

4.1 Spherical Cosine Function

The first case considered was the reconstruction of a smooth spherical cosine function.
The function, which is smooth in all directions, is illustrated in Fig. 3a and described by

u(r) = 1 +
1

3
cos(r) (49)

where r = 10
√
x2 + y2 + z2 is the radial position. The solution was computed on a unit

cube centered at (0.5, 0.5, 0.5) using grids composed of tetrahedral cells with varying
levels of resolution. A sample mesh is illustrated in Fig. 3b.

Unlimited k-exact reconstructions of the spherical cosine function that were obtained
on a coarse mesh (995 vertices and 4,515 tetrahedral elements) are illustrated in Fig. 3c.
As the order of the piecewise polynomial interpolant was increased from k=0 to k=3, the
reconstructed solution rapidly approached the exact solution. There is almost no visible
difference between the exact solution and the reconstructed solution for k=4 (not shown
in figure).

The behavior of the discretization error as the mesh resolution was increased, illustrated
in Fig. 3d for various values of k, confirms that k-exact reconstruction of a smooth function
yields an order of accuracy equal to k+1. A convergence rate of approximately k+1 was
observed in all of the error norms, including the L∞ error norm.

4.2 Abgrall’s Function

The Abgrall function [60] possesses a number of solution discontinuities that test a
high-order spatial discretization’s ability to maintain monotonicity. As such, reconstruc-
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(a) Exact solution. (b) A sample computational mesh.
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(c) Unlimited reconstructions along the diagonal
from (0, 0, 0) to (1, 1, 1) on a mesh with 995 ver-
tices.
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Figure 3: Results for k-exact reconstruction of the spherical cosine function.

tions of this function were performed using the proposed CENO algorithm to ensure
the effectiveness of the smoothness indicator defined in Eq. (32). While the perfor-
mance of the smoothness indicator was already verified using the Abgrall function on
both structured [36] and unstructured [32–35] mesh, it has not been verified for vertex-
based approach. All of the previous CENO approaches applied cell-based finite-volume
formulations only.

Since the Abgrall function was originally designed to vary in two space dimensions
only, it was modified to include a variation and discontinuity along the third dimension.
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The resulting three-dimensional, discontinuous function is given by

u(x, y, z) = g(z) ·

 f
[
x− cot

(√
π/2 y

)]
x ≤ cos(πy)/2

f
[
x+ cot

(√
π/2 y

)]
+ cos(2πy) x > cos(πy)/2

(50)

where

f(r) =


−r · sin (3πr2/2) r ≤ −1/3

| sin(2πr)| |r| < 1/3

2r − 1 + sin(3πr)/6 r ≥ 1/3

(51)

and

g(z) =

{
sin (zπ/2) /2 + 1 z < −1/2

−z/2 + 1 z ≥ −1/2
(52)

Eq. (50) was discretized on a cube with length 2 and centered about the origin, using
computational meshes similar to those used for the spherical cosine function (Fig. 3b). A
reconstructed solution that was obtained with k = 4 is compared with the exact solution
along z = 0 in Figs. 4a and 4b. This reconstruction was preformed on a mesh with
approximately 3 million vertices and 18 million tetrahedral elements, and, as observed
in Fig. 4b, it was able to accurately represent the Abgrall function without producing
spurious oscillations. This is because the smoothness indicator, illustrated in Fig. 4c,
correctly identified the discontinuities in both u and ∂u/∂xi.

The solution obtained with k = 0 to 4 on a mesh with 18 million tetrahedral elements is
compared with the original function along a line in Fig. 4d. The proposed CENO scheme
was able to ensure oscillation-free solutions despite the large discontinuities observed.
This confirms the effectiveness of the smoothness indicator.

The effect of mesh resolution on the L1 norm of the solution error is illustrated in
Fig. 5. A large improvement in the error was achieved by increasing k from 0 to 1.
This improvement became less pronounced as k was increased further to 2 since a large
portion of the domain possessed discontinuous features. In fact, because of the large
number of discontinuities, there was only a slight improvement in the solution error as k
was increased beyond 2. This indicates that the solution error has not yet reached the
asymptotic regime for this case.

The convergence rate of the error norms is also provided in Fig. 5. An order of accuracy
of 1 was observed for all values of k, which was expected after applying a limited piecewise
linear reconstruction near discontinuous. Nonetheless, the main highlight is that the
hybrid reconstruction procedure was able to produce non-oscillatory solutions despite the
presence of discontinuities, using only a single, central stencil.
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(a) Exact solution along z = 0. (b) Reconstructed solution along z = 0 using k =
4.

(c) Computed smoothness indicator for k = 4.
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(d) Reconstructed solution along the section line
in (b).

Figure 4: Results for CENO reconstruction of the modified Abgrall function. Numerical results shown
here were obtained using a mesh with 3 million vertices and 18 million tetrahedral elements.

4.3 Smooth Supersonic Flow

The spatial accuracy of the proposed finite-volume formulation was verified for smooth
flows using the method of manufactured solutions (MMS) [61–63]. In MMS, analytical
source terms are derived which, when added to the governing equations, produce a desired
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Figure 5: Effect of grid resolution on solution accuracy for CENO reconstruction of the modified Abgrall
function. Accuracy is measured using the L1 norm of the error.

Table 3: The coefficients for the three-dimensional manufactured solution to Eq. (53).

φ φ0 φx φy φz aφx aφy aφz

ρ 1 0.15 -0.1 -0.12 1 0.5 1.5
u 800 50 -30 -18 1.5 0.6 0.5
v 800 -75 40 -30 0.5 2/3 1.25
w 800 15 -25 35 1/3 1.5 1
p 1×105 0.2×105 0.5×105 -0.35×105 2 1 1/3

solution. The particular MMS approach outlined by Roy et al. [64, 65] was applied to
produce sinusoidal solutions of the following form:

ρ = ρ0 + ρx sin (aρxπx/L) + ρy cos
(
aρyπy/L

)
+ ρz sin (aρzπz/L) (53a)

u =u0 + ux sin (auxπx/L) + uy cos
(
auyπy/L

)
+ uz cos (auzπz/L) (53b)

v = v0 + vx cos (avxπx/L) + vy sin
(
avyπy/L

)
+ vz sin (avzπz/L) (53c)

w =w0 + wx sin (awxπx/L) + wy sin
(
awyπy/L

)
+ wz cos (awzπz/L) (53d)

p = p0 + px cos (apxπx/L) + py sin
(
apyπy/L

)
+ pz cos (apzπz/L) (53e)

where φ0, φx, φy, φz, aφx , aφy , and aφz are constants for the variable φ ∈ {ρ, u, v, w, p}.
The coefficients were chosen based on those given by Roy et al. [64] for smooth, three-
dimensional, supersonic, inviscid flow. They are provided in Table 3 for completeness.
The length scale, L, was chosen as unity.

This particular manufactured solution describes a steady supersonic flow at an angle
of approximately 45 degrees to the coordinate axes, and with a Mach number varying
between 3 and 6. The flow was modeled on a unit cube over the range 0 ≤ x, y, z ≤ 1;
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although, any domain could be used since the solutions exist for all x, y and z. An
example of this smoothly varying solution is illustrated in Fig. 6a, which depicts the
internal energy distribution.

The spatial accuracy was assessed by performing calculations with different mesh sizes
and measuring the changes in solution error. Solutions were obtained on meshes of vary-
ing resolution, similar to those in Fig. 3b, with supersonic inflow and outflow boundary
conditions at the corresponding upstream and downstream boundaries of the domain. All
solutions were relaxed to a steady-state using the two-stage optimally smoothing scheme
of Van Leer et al. [58] with a CFL = 0.5 and the HLL numerical flux. Any numerical
flux can be used for this error analysis, because, according to Eq. (12), the dissipation
vanishes with O(hk+1) for smooth solutions.

For each calculation, the analytical solution at every vertex of the primal mesh was
prescribed and the governing equations were relaxed until all equation residuals were re-
duced by four orders of magnitude. Tighter tolerances were also tested, but no significant
gain in accuracy was observed using them.

The L2 norm of the error in the predicted internal energy, e, is illustrated in Fig. 6b.
All of the primitive solution quantities displayed the same relationship between mesh size
and total solution error, but e displayed the largest errors, and was therefore chosen for
this analysis. The slopes of the lines in Fig. 6b are provided in Fig. 6c, along with those
observed for the other norms, i.e., the L1 and L∞ norms. For all values of interest for
k, the formal order of accuracy was achieved by the L2 norm. The other norms also
displayed similar convergence characteristics, although some degradation of the slopes of
the L∞ norms were observed as the mesh spacing decreased. This is largely attributed
to the finite precision of the adaptive cubature algorithm used to evaluate the numerical
errors.

The solution error is plotted as a function of the wall-clock time in Fig. 6d. The high-
order schemes become more efficient in terms of accuracy vs computational cost as the
target accuracy gets smaller. That is, there is a particular range of accuracy for which a
particular value of k is the most efficient, and this optimal value of k increases with the
desired level of accuracy. For all the meshes considered, the first-order (k = 0) scheme
was the least efficient, while the second-order (k = 1) scheme was the most efficient for
a target error above about 103. Just below this level of error, the fourth-order (k = 3)
scheme was the most efficient. The fifth-order (k = 4) scheme was the most efficient for
errors below 10. For this particular problem, there was no range over which the third-
order (k = 2) scheme was optimal. These results confirm that, for smooth problems,
higher-order schemes are more efficient for higher levels of desired accuracy.

4.4 Shock Tube

The robustness and accuracy of the algorithm was demonstrated for non-smooth prob-
lems with a one-dimensional shock-tube [66]. This time-dependent problem was solved
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(a) Exact solution.
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Figure 6: Results for smooth supersonic flow.

on a rectangular domain of length 1, with the following initial conditions:

W(x, 0) =

{
WL if x ≤ 0.45,

WR if x > 0.45
(54)

where WL = [1, 0, 0, 0, 1] and WR = [0.1, 0, 0, 0, 0.125]. A sample of the meshes used
is illustrated in Fig. 7 along with the dimensions of the computational domain.

Solutions were obtained for different values of k, using meshes of increasing resolution.
All solutions were integrated in time until t = 0.2 s with the RK4 time-marching scheme,
a CFL of 0.2, and the HLL numerical flux. Reflection boundary conditions were applied
to the surrounding surfaces while the solution was free to vary at both ends of the tube.
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Figure 7: Sample computational mesh and domain used for shock tube problem.

Solutions on the finest mesh considered are compared with the exact solution at t =
0.2 s in Fig. 8a. Overall, there was a distinct improvement in the numerical solution as
the polynomial degree was increased, even near discontinuities. This is highlighted for
the contact surface in the inset of Fig. 8a. There was an initial large improvement in
the solution as k was increased from 0 to 1. Further increases in k provided smaller and
smaller improvements in the solution.

A similar comparison is made in Fig. 8b, which illustrates the effect of mesh resolution
on the fifth-order (k = 4) scheme. As expected, increasing the mesh resolution improves
the agreement of the numerical solution with the exact solution. This occurs because
there is less dissipation introduced by the time marching scheme, i.e., smaller time steps,
and the spatial discretization, i.e., smaller grid spacing.

The behavior of the L1 error norms with mesh size is demonstrated for ρ in Fig. 8c. The
first-order (k = 0) scheme does not quite reach the asymptotic region. It only achieves
an order of accuracy of approximately 0.7. The k = 1 scheme achieved a significant
reduction in error over the k = 0 scheme, but only converges at a rate of O(h) due to the
discontinuities present in the solution. Using the coarsest mesh, all higher-order (k > 1)
schemes had the same error as the linear representation. This is because the smoothness
indicator detected under-resolved data throughout most of the domain and the linear
reconstruction was used everywhere. However, as the mesh resolution was increased, the
higher-order schemes had lower errors. All higher-order schemes only achieved first-order
accuracy, which was expected because of the discontinuities in the solution, but there was
still a decrease in overall error as k was increased beyond 1. Even though CENO drops
to first-order near discontinuities, the size of the region influenced by the discontinuity
decreases with mesh size. As such, there is a net reduction in error.

The computational efficiency was assessed in terms of the wall-clock time to a given
level of error. Over the range of meshes studied, the k = 1 scheme was the most efficient.
However, extrapolating to lower error levels, the k = 2 scheme is expected to be more
efficient for error levels below 0.02. The efficiency of the other high-order schemes, i.e.,
k = 3 and k = 4, is expected to improve as the desired error is lowered further.
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(a) Effect of polynomial degree on predictions us-
ing a mesh with 520,821 vertices.
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Dashed lines represent extrapolations.

Figure 8: Results for one-dimensional shock-tube at t=2 s.

4.5 Sedov Blast Wave

The Sedov explosion problem [67] involves the evolution of a spherical blast wave from
an initial pressure perturbation in an otherwise homogeneous medium. The blast wave
was generated by an initial energy source, eblast, located in a small region of radius r0 near
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Figure 9: Sample computational mesh used for Sedov problem.

the origin. The initial conditions at time t = 0 are

ρ(r, 0) = 1, ~v(r, 0) = ~0, p(r, 0) =


3 ρ (γ − 1) eblast

4πr3
0

if r ≤ r0

10−5 if r > r0

where r =
√
x2 + y2 + z2, eblast = 0.851072. This configuration gives a blast wave that

reaches r = 1 at t = 1 s.
In practice, it is difficult to define a small radius r0 without an overly fine mesh near the

origin, especially when using tetrahedral mesh. So the energy eblast was deposited into the
control volume at the origin only. Simulations were obtained with k = 0, 1, . . . , 4 on four
different, successively-refined meshes. All solutions were integrated in time until t = 1 s
with the RK4 time-marching scheme, a CFL of 0.1, and the Rusanov numerical flux.
Only an octant of a sphere was modeled, with reflecting boundary conditions to enforce
symmetry. The outer surface of the sphere, located at R = 1.2 m, was also treated as a
reflecting wall. A sample computational mesh is illustrated in Fig. 9.

Predictions for density are compared with the analytical solution in Fig. 10. The exact
solution for this spherical blast wave was obtained using the numerical algorithm outlined
by Kamm [68]. For all values of k and meshes employed, no oscillations were observed in
front of or behind the diverging shock wave. For the high-order solutions, i.e., k > 1, the
smoothness indicator correctly identified the large solution discontinuity at the moving
shock front

The effect of polynomial order on the predicted density is illustrated in Fig. 10a for the
finest mesh investigated (844,701 vertices and 4,922,880 tetrahedra). As also observed
for the shock tube test problem in Section 4.4, increasing the order of the polynomial
provided a significant improvement in the predicted solution.

Figure 10b illustrates the effect of mesh resolution on the predicted density, which
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(b) Effect of mesh size on predictions for k = 4.

Figure 10: Results for the Sedov problem at t = 1 s.

was obtained using the 5th-order (k = 4) CENO reconstruction. At low resolutions, the
smoothness indicator flagged a large portion of the domain as under-resolved. However,
as the mesh resolution was increased, the size of the region treated using the lower-order
limited piecewise linear reconstruction diminished.

4.6 Triple-Point Shock Interaction

As a final test of the algorithm’s robustness, a three-dimensional, three-state Riemann
problem was studied. The initial conditions, which are illustrated in Fig. 11 along with
the geometry, generate a shock that propagates parallel to a contact discontinuity, which
in turn generates a high-speed vortex. This problem does not have an exact solution,
but it is studied here because of the difficulty in resolving the interaction between the
shocks and contact discontinuities without generating spurious oscillations, especially for
high-order solution methods.

Two simulations were obtained on mesh with approximately 347,811 vertices and
1,960,914 tetrahedra, one with a low-order representation (k = 1) and one with a high-
order (k = 4) polynomial representation. Both solutions were integrated in time until
t = 5 s with the RK4 time-marching scheme, a CFL of 0.25, and the HLL numerical flux.
Reflection and solid wall boundary conditions were applied as indicated in Fig. 11.

Numerical predictions for density at t = 5 s are compared in Fig. 12. No significant
differences between the two solutions were visible, because the high-order CENO scheme
deemed a large portion of the flow non-smooth and it was treated using the limited linear
reconstruction instead. These results highlight the robustness of the high-order CENO
algorithm, since the k = 4 scheme was able to reliably obtain a solution without producing
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Figure 11: Computational domain and initial conditions for the triple-point problem.

Figure 12: Predicted density field at t = 5 s for triple-point problem.

any unphysical oscillations.

5 CONCLUSIONS

A high-order finite-volume scheme was developed for the mathematical description of
compressible fluids on unstructured meshes. It is a vertex-based variant of the cell-based,
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Godunov-type, finite-volume methods developed by Ivan et al. [36–40] and Charest et al.[32–
35], which use a hybrid CENO reconstruction procedure to avoid spurious oscillations.
The scheme was assessed in terms of accuracy and computational cost for a variety of
problems, including smooth and discontinuous function reconstructions, and solutions to
idealized flow problems.

Up to fifth-order accuracy was demonstrated. For smooth flows and function recon-
structions, (k + 1)th order of accuracy was achieved using piecewise polynomial repre-
sentations of degree k. Only first-order accuracy was observed for all problems that
contained discontinuities, but there was still a measured advantage provided by the high-
order schemes. They displayed lower errors for a given mesh.

In terms of computational efficiency, i.e., wall time for a given accuracy, there was
an optimal value of k which varied depending upon the desired error, and the particular
problem. The standard second-order scheme was the most efficient for higher error levels,
and the high-order schemes became more efficient as the desired error was decreased.
This was demonstrated for smooth and discontinuous problems, although the mesh sizes at
which the high-order schemes were more efficient was significantly larger for discontinuous
problems.

Overall, this research highlights the main advantages of the CENO finite-volume al-
gorithm. High-order accuracy was achieved in smooth regions, while robust and mono-
tone solutions were maintained near discontinuities and under-resolved solution content.
Future work consists of further development and validation of the proposed algorithm,
including its extension to multi-material problems, arbitrary equations of state, moving
meshes, and adaptive mesh refinement.
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