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Abstract. We consider the adaptive coupling of finite element method (FEM) and
boundary element (BEM) in 2D. It is well-known that the condition number of the
Galerkin matrix depends on the minimal diameter of the elements in the triangulation
and therefore can grow severely if the triangulation is locally refined. Usually, this affects
the solver, i.e., the number of iterations used by an iterative solver can be arbitrarily
large. Thus, the construction of an optimal preconditioner is a necessary task to ensure
performance as well as reliable results. Here, optimality is understood in the sense that
the condition number of the preconditioned system remains bounded independently of
the (minimal and maximal) diameter as well as the number of elements.

In our talk, we present some block-diagonal preconditioner for the non-symmetric
Johnson-Nédélec FEM-BEM coupling on locally refined triangulations. The diagonal
blocks correspond to local additive Schwarz preconditioners for either the FEM part or
the BEM part. We report on the optimality result for this preconditioning from [5] and
underline this mathematical result by numerical experiments.
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Figure 1: Experimental growth of the ℓ2-condition number of the unpreconditioned matrix B (blue)
and the condition numbers condP(P

−1B) (green) as well as condPHB
(P−1

HB
B) (red) and condPG

(P−1

G
B)

(turquois) on a sequence of strongly adapted meshes. See Section 6 for a detailed description.

1 INTRODUCTION

The coupling of FEM and BEM is the natural method of choice for the numerical treat-
ment of certain partial differential equations (PDEs) on unbounded computational do-
mains, e.g., full-space problems arising in electrostatics or magnetostatics. The overall
problem is split into a problem in a bounded domain Ω and an exterior problem in R2\Ω
which is reformulated by an integral equation on the boundary Γ = ∂Ω. As far as con-
forming methods with direct integral formulation of the exterior problem are concerned,
essentially two types of coupling methods have been thoroughly analyzed: While the
mathematical literature mainly studied the symmetric coupling from [3], stability of the
Johnson-Nédélec coupling [7] for polygonal coupling boundaries has only been proved re-
cently [10, 11, 1]. Since the Johnson-Nédélec coupling involves only two boundary integral
operators and avoids, in particular, the use of the hypersingular integral operator, it is
often preferred in practice.

For a Laplace-type transmission problem (see Section 3 for details), the Johnson-
Nédélec coupling reads as follows: Find (u, φ) such that

〈A∇u , ∇v〉Ω − 〈φ , v〉Γ = 〈f , v〉Ω + 〈φ0 , v〉Γ, (1a)

〈ψ , (1
2
−K)u+ Vφ〉Γ = 〈ψ , (1

2
−K)u0〉Γ, (1b)

for all test functions (v, ψ). The material behavior is described by A, and V resp. K
are the simple-layer resp. double-layer integral operators, see Section 3 below for proper
definitions.

Using linear FEM in Ω to discretize u and piecewise constants on Γ to discretize the
flux φ, (1) becomes a linear system of equations
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Bu = f with block matrix B =

(
A −MT

1
2
M−K V

)
+ ssT , (2)

where s denotes an appropriate stabilization vector which ensures positivity of B (see
Lemma 1).

Adaptive methods — for FEM and BEM — resolve singularities of given data and
solutions and are known to be optimal in the sense that the error decreases with the
best possible algebraic rate [4]. Therefore, adaptive methods can lower the computational
costs dramatically. However, a main drawback of adaptive FEM and BEM, hence also
of the adaptive FEM-BEM coupling, is that the condition number of the corresponding
matrices hinges on the minimal diameter of the elements and thus becomes bad on adap-
tively refined triangulations, see Figure 1 for the growth of the condition number of the
unpreconditioned FEM-BEM matrix B. It is therefore a necessary task to construct op-
timal, i.e. mesh-independent, preconditioners in order to preserve the advantages of the
adaptive method.

In [5], we propose and thoroughly analyze a block-diagonal preconditioner

P =

(
PA 0
0 PV

)
(3)

for the FEM-BEM matrix B. Roughly speaking, PA corresponds to a preconditioner for
the FEM part and PV to a preconditioner for the BEM part of (2). It is reasonable to use
the whole hierarchy of the adaptively generated meshes to construct so-called multilevel
methods. Here, we consider local additive Schwarz preconditioners for both blocks PA and
PV , which correspond to a diagonal scaling on local subsets of degrees of freedom (nodes).
These subsets contain the newly created nodes and their immediate neighbours, i.e., those
regions which are affected by the refinement. As it turns out mathematically (Theorem 4)
and practically (Figure 1), the condition number of the preconditioned system P−1B is
bounded independently of the (local) mesh-size and the number of elements.

Alternatively, one could consider a hierarchical basis preconditioner PHB, where diago-
nal scaling is done only on newly created nodes, or a global multilevel preconditioner PG,
where diagonal scaling is done on all nodes. However, we stress that these strategies lead
to condition numbers which depend on the sequence of adaptively refined triangulations
and are thus sub-optimal, see Figure 1 for an experimental proof.

The outline of this work is as follows: In Section 2, we write down the PDE model
problem, which is equivalently reformulated by the Johnson-Nédélec coupling in Section 3.
Section 4 deals with the triangulations and ansatz-/test-spaces. The main result about
the block-diagonal preconditioning is stated in Section 5, together with the preconditioned
GMRES algorithm. Further numerical experiments are given in Section 6. We conclude
with some notes on possible extensions and future work (Section 7).
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2 PDE FORMULATION OF MODEL PROBLEM

Let Ω ⊂ R2 be a simply connected, bounded Lipschitz domain with polygonal boundary
Γ = ∂Ω. We consider the following linear transmission problem with given data f, u0, φ0

and sought solution u, uext

− div(A∇u) = f in Ω, (4a)

−∆uext = 0 in R2\Ω, (4b)

u− uext = u0 on Γ, (4c)

(A∇u−∇uext) · n = φ0 on Γ, (4d)

uext(x) = O(1/|x|) as |x| → ∞, (4e)

where n is the normal vector pointing from Ω to R2\Ω.
As usual, we denote by L2(Ω) the space of square-integrable functions on Ω, and

〈f , g〉Ω =
∫
Ω
fg dx denotes the corresponding L2-scalar product with induced norm

‖f‖2L2(Ω) := 〈f , f〉Ω. Analogously, we define L2(Γ), 〈· , ·〉Γ, and ‖ · ‖L2(Γ) for square-

integrable functions on the boundary. Moreover, H1(Ω) is the Sobolev space for which
u ∈ H1(Ω) satisfies ‖u‖H1(Ω) := ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) <∞. Let γ0 denote the trace oper-

ator with γ0u = u|Γ for smooth functions u. It can be extended to H1(Ω) functions, where
H1/2(Γ) := γ0(H

1(Ω)) is again a Hilbert space with dual space H−1/2(Γ) := (H1/2(Γ))∗.
Here, duality is understood with respect to the (continuously) extended scalar product
〈· , ·〉Γ. If there is no ambiguity, we write u instead of γ0u for functions u ∈ H1(Ω).

Let A ∈ L∞(Ω)2×2 with A(x) ∈ R2×2
sym for almost all x ∈ Ω denote an operator, used

to model the material behavior in the computational domain Ω. We assume that the
minimal and maximal eigenvalues of A are bounded in the sense that

0 < cA := ess inf
x∈Ω

λmin(A(x)) ≤ CA := ess sup
x∈Ω

λmax(A(x)) <∞.

Then, the problem (4) is known to admit a unique solution, if we impose the compatibility
condition

〈f , 1〉Ω + 〈φ0 , 1〉Γ = 0

to ensure the right behavior (4e) in the exterior domain.

3 JOHNSON-NÉDÉLEC COUPLING

We give a short sketch for the derivation of the Johnson-Nédélec coupling. Multiply-
ing (4a) with a test-function v and using Green’s first identity, we obtain

〈A∇u , ∇v〉Ω − 〈A∇u · n , v〉Γ = 〈f , v〉Ω.

Define φ := ∂uext

∂n
. By inserting the jump (4d) of the fluxes, we end up with the first

coupling equation (1a).
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Green’s third formula provides the representation

uext(x) =
1

2π

∫

Γ

(x− y) · n(y)

|x− y|2
uext(y) dΓy +

1

2π

∫

Γ

log |x− y|
∂uext

∂n
dΓy, x ∈ R2\Ω.

Restricting this equation to Γ and using the jump (4c), we get

u− u0 = (1
2
+K)(u− u0)− Vφ on Γ, (5)

where the linear and continuous boundary integral operators

V : H−1/2(Γ) → H1/2(Γ), K : H1/2(Γ) → H1/2(Γ),

formally read

Vφ(x) := −
1

2π

∫

Γ

log |x− y|φ(y) dΓy, Kv(x) :=
1

2π

∫

Γ

(x− y) · n(y)

|x− y|2
v(y) dΓy.

The second coupling equation (1b) is then obtained by testing (5) in H−1/2(Γ).
Since the work [10] it is known, that the coupling (1) is stable even on polygonal

interfaces for A(x) being the d × d identity matrix. The work [9] employs an explicit
stabilization and proves well-posedness if A satisfies cA > cK/4, where cK ∈ [1/2, 1)
denotes the contraction constant of the double-layer integral operator K, cf. [12]. However,
we follow an alternative approach from [1], which ensures the same stability results as in [9,
10, 11], but in contrast to [9, 11] avoids the computation of additional boundary integral
equations. We summarize the results of the above mentioned works in the following
lemma.

Lemma 1 Suppose cA > cK/4. Define the (stabilized) coupling operator B : H → H∗ by

〈B(u, φ) , (v, ψ)〉 := 〈A∇u , ∇v〉Ω − 〈φ , v〉Γ + 〈ψ , (1
2
−K)u+ Vφ〉Γ

+ 〈1 , (1
2
−K)u+ Vφ〉Γ〈1 , (

1
2
−K)v + Vψ〉Γ

and the right-hand side F ∈ H∗ by

F (v, ψ) := 〈f , v〉Ω+〈φ0 , v〉Γ+〈ψ , (1
2
−K)u0〉Γ+〈1 , (1

2
−K)u0〉Γ〈1 , (

1
2
−K)v + Vψ〉Γ

for all (u, φ), (v, ψ) ∈ H = H1(Ω)×H−1/2(Γ). Let Hℓ denote an arbitrary closed subspace
of H with (0, 1) ∈ Hℓ. Then, (u, φ) ∈ Hℓ solves

〈B(u, φ) , (v, ψ)〉 = F (v, ψ) for all (v, ψ) ∈ Hℓ (6)

if and only if it solves (1). Moreover, B is positive definite and bounded, i.e.

cB‖(u, φ)‖
2
H ≤ 〈B(u, φ) , (u, φ)〉 ≤ CB‖(u, φ)‖

2
H for all (u, φ) ∈ H.

In particular, (6) and thus also (1) admit a unique solution (uℓ, φℓ) ∈ Hℓ. �

We assume that Ω is scaled in such a way that ellipticity of V is ensured.
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Figure 2: For each triangle T ∈ T Ω

ℓ
, there is one fixed reference edge, indicated by the double line

(left, top). Refinement of T is done by bisecting the reference edge, where its midpoint becomes a new
node. The reference edges of the son triangles are opposite to this newest vertex (left, bottom). To avoid
hanging nodes, one proceeds as follows: We assume that certain edges of T , but at least the reference
edge, are marked for refinement (top). Using iterated newest vertex bisection, the element is then split
into 2, 3, or 4 son triangles (bottom).

4 MESH-REFINEMENT AND DISCRETIZATION

Let T Ω
0 denote a conforming (initial) triangulation of Ω. We stress that T Γ

0 = T Ω
0 |Γ is also

a conforming triangulation of the boundary Γ. The triangulation T Ω
ℓ is obtained from

T Ω
ℓ−1 by refining (at least) all marked elements. As refinement strategy, we use the newest

vertex bisection (NVB) algorithm, see [8] and references therein as well as Figure 2. The
advantage of this strategy is that it, firstly, preserves γ-shape-regularity

sup
T∈T Ω

ℓ

diam(T )2

|T |
≤ γ <∞

for an ℓ-independent γ > 0 and, secondly, is used to prove optimality of the adaptive
FEM-BEM coupling [4]. Here, diam(T ) stands for the diameter and |T | for the area of
the triangle T . Note, that T Γ

ℓ := T Ω
ℓ defines a conforming triangulation of Γ.

We consider the lowest-order discretizations, i.e. we use the ansatz and test spaces

X ℓ := {v ∈ C(Ω) : v|T is affine for all T ∈ T Ω
ℓ },

Yℓ := {ψ ∈ L2(Γ) : ψT is constant for all T ∈ T Γ
ℓ }.

Let NΩ
ℓ resp. N Γ

ℓ denote the set of nodes in the triangulation T Ω
ℓ resp. T Γ

ℓ . The usual
basis of X ℓ is given by the hat-functions (nodal functions) ηℓz, which satisfy ηℓz(z) = 1 and
ηℓz(z

′) = 0 for z 6= z′ and z, z′ ∈ NΩ
ℓ . Moreover, ηℓz|Γ gives us a basis for the trace space

X ℓ|Γ. The canonical basis of Y
ℓ is given by the characteristic functions χT on the element

T ∈ T Γ
ℓ . Furthermore, note that the triangulations (T Ω

0 , T
Γ
0 ), . . . , (T Ω

L , T
Γ
L ) provide a

nested sequence of subspaces X ℓ−1 × Yℓ−1 ⊆ X ℓ × Yℓ.
To tackle the local nature of adaptive methods in the preconditioner, we define local

sets of degrees of freedom

ÑX
0 := NX

0 , ÑX
ℓ := NX

ℓ \NX
ℓ−1 ∪ {z ∈ NX

ℓ−1 : ηℓz 6= ηℓ−1
z },

where X = Ω resp. X = Γ. A visualization is given in Figure 3.
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Figure 3: The left figure shows a FEM mesh T Ω

ℓ−1
, where the two elements (green) are marked for

refinement. Bisection of these two elements provides the mesh T Ω

ℓ
(right), where two new nodes are

created. The set ÑΩ

ℓ
consists of these new nodes plus their immediate neighbours (red), where the

corresponding hat-functions have changed.

The discretization of the operator B from Lemma 1 with respect to the finite dimen-
sional space X L × YL leads to the matrix B with the block structure as given in (2),
where A corresponds to the discretization of A, M is a mass-matrix and K resp. V cor-
respond to the discretizations of the boundary integral operators K resp. V . Moreover,
ssT denotes the rank-1 stabilization term of the operator B. Also note that positivity of
B is inherited from B.

5 BLOCK-DIAGONAL PRECONDITIONER

Throughout, we analyze the symmetric and positive definite block-diagonal precondi-
tioner (3), with PA being a “good” approximation of the matrix A + s′s′T , where s′s′T

is the block of the stabilization matrix ssT that corresponds to the degrees of freedom in
X L, and PV being a “good” approximation of the matrix V. In mathematical terms, this
is expressed by spectral equivalence, i.e. there exist constants dA, DA, dV , DV > 0 such
that

dAx
TPAx ≤ xTAx ≤ DAx

TPAx (7)

dVy
TPVy ≤ yTVy ≤ DVy

TPVy. (8)

for all x ∈ RNL , y ∈ RML . We speak of optimal preconditioners if these constants are
independent of the diameters of the elements, the number of elements in T Ω

L resp. T Γ
L

and the level L.
Altogether, we seek for a solution u of

P−1Bu = P−1f . (9)

5.1 Preconditioned GMRES algorithm

We consider the GMRES algorithm to solve (9), where we replace the usual euclidean
inner product with the inner product induced by the symmetric and positive definite

7
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matrix P, i.e. yTx is replaced by yTPx. The algorithm stops, if the residual rj in the
j-th step of the algorithm satisfies ‖rj‖P ≤ τ‖r0‖P for some given tolerance parameter
0 < τ < 1. Here, r0 = P−1(Bu0 − f) denotes the initial residual with initial guess u0. It
can be proven, that there holds the following reduction of the j-th residual generated by
the preconditioned GMRES algorithm

‖rj‖P ≤ (1− α2/β2)j/2‖r0‖P,

where ‖ · ‖P denotes the norm induced by P. The constants α, β depend on P−1B and
are estimated in the proof of the main result (Theorem 4 below). We stress, that the
preconditioned GMRES algorithm with inner product induced by P can be implemented
without explicit knowledge of P. This is advantageous in practice, since only P−1 is
known. We refer to [5] for details.

5.2 Main result

Let Iℓ denote the matrix which realizes the canonical embedding X̃ ℓ = span{ηℓz : z ∈

ÑΩ
ℓ } → X L and let Dℓ

Ω denote the diagonal of the matrix A+ s′s′T (with respect to X ℓ)

restricted to the degrees of freedom in ÑΩ
ℓ . Our local multilevel preconditioner is defined

by

P−1
A :=

L∑

ℓ=0

Iℓ(Dℓ
Ω)

−1(Iℓ)T .

A proof of the following theorem follows from the analysis of [14] and the references
therein.

Theorem 2 The constants dA, DA in the spectral equivalence estimate (7) depend only
on Ω, A, and the initial triangulation T Ω

0 . �

The construction of P−1
V is a little bit more involved. Let χℓ

z := (ηℓz|Γ)
′ denote the Haar

basis function. Note that

Ỹℓ := span{χℓ
z : z ∈ Ñ Γ

ℓ } ( Yℓ.

Let Hℓ denote a matrix representation of the Haar basis functions in Ỹℓ with respect to
the canonical basis of Yℓ. Moreover, let Dℓ

Γ be the diagonal of the matrix (Hℓ)TVHℓ and
let Jℓ be the matrix realization of the canonical embedding Yℓ → YL. Our local multilevel
preconditioner reads

P−1
V := 1〈1 , V1〉Γ1

T +
L∑

ℓ=0

JℓHℓ(Dℓ
Γ)

−1(Hℓ)T (Jℓ)T ,

where 1 denotes a vector whose entries are all 1. Optimality of PV follows from the
optimality of a multilevel additive Schwarz preconditioner for the hypersingular integral
operator analyzed in [6].
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Figure 4: Z-shaped domain Ω with diam(Ω) < 1 and initial volume triangulation T Ω
0 . The initial

triangulation T Γ
0 of the boundary is given by the restriction T Ω

0 |Γ of the volume triangulation on the
boundary. The initial triangulations consist of #T Ω

0 = 14 resp. #T Γ
0 = 10 elements. Red lines indicate

the reference edges for the newest vertex bisection of the initial volume triangulation.

Theorem 3 The constants dV , DV in the spectral equivalence estimate (8) depend only
on Γ and the initial triangulation T Γ

0 . �

By condP(B) = ‖B‖P‖B
−1‖P, we denote the condition number of B with respect to

the matrix norm induced by the symmetric and positive definite matrix P.

Theorem 4 Theorem 2 and 3 imply that the condition number

condP(P
−1B) ≤ C <∞

is uniformly bounded. Moreover, the j-th residual from the preconditioned GMRES algo-
rithm satisfies

‖rj‖P ≤ qj‖r0‖P.

The constants C > 0, 0 < q < 1 depend only on Ω, A, and the initial triangulation T Ω
0 .
�

6 NUMERICAL EXAMPLES

Let Ω denote the Z-shaped domain sketched in Figure 4. We consider the coupling problem
with A(x) being the 2 × 2 identity matrix. Hence, div(A∇u) = ∆u. We prescribe the
exact solutions
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Figure 5: We compare the different types of preconditioners P, PHB and PG. Left: Experimental
condition numbers for B and the preconditioned systems P−1B, P−1

HB
B, and P−1

G
B for the example of

Section 6. Right: Number of iterations for solving the Johnson-Nédélec coupling using the preconditioned
GMRES algorithm from Section 5.1 with tolerance τ = 10−6 and inner product induced by P resp. PHB

resp. PG on adaptively refined meshes. We choose u0 = 0 for the initial guess.

u(x, y) = r4/7 cos(4θ/7) for (x, y) ∈ Ω,

uext(x, y) =
1

10

x+ y − 1
8

(x− 1
8
)2 + y2

for (x, y) ∈ R2\Ω,

where (r, θ) denote the 2D polar coordinates. The data f ∈ L2(Ω), u0 ∈ H1/2(Γ), and
φ0 ∈ H−1/2(Γ) are computed thereof. We stress that u exhibits a generic singularity at
the reentrant corner (0, 0) ∈ R2. To steer the mesh-adaptivity, we use the residual-based
error estimator from [1] which dates back to [2] for the symmetric coupling.

In Figure 5 we plot the condition numbers of the matrices B, P−1B. For comparison we
consider two other preconditioners: On the one hand a hierarchical basis preconditioner
PHB which is defined as P, but the local subsets ÑX

ℓ are replaced by NX
ℓ \NX

ℓ−1 for
X = Ω,Γ, i.e. diagonal scaling is done only on newly created nodes. On the other hand a
global multilevel preconditioner PG, where ÑX

ℓ is replaced by NX
ℓ , i.e. diagonal scaling

is done on all nodes in the triangulation.
Next, we count the number of iterations j used in the preconditioned GMRES algorithm

to reduce the relative residual ‖rj‖P/‖r
0‖P by a factor of τ = 10−6. We set u0 = 0 as the

initial guess. For comparison we also count the number of iterations when using PHB or
PG instead of P. The results are visualized in Figure 5.

Finally, we consider an artificial refinement of the Z-shape given in Figure 4, where
we mark only those elements for refinement which are closest to the origin (0, 0). This
will lead to strongly adapted triangulations. In Figure 1, the condition numbers of B,

10
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P−1B, P−1
HBB, and P−1

G B are given. We obtain optimality of P−1, whereas PHB and PG

are sub-optimal.

7 EXTENSION AND OUTLOOK

We have seen that the proposed block-diagonal preconditioner P from (3) for the (adap-
tive) Johnson-Nédélec coupling is optimal. For the symmetric coupling, P defines also an
optimal preconditioner, leading to the same results as in Theorem 4.

Moreover, for 3D problems, similar block-diagonal preconditioners can be used, pro-
vided that the blocks PA, PV satisfy the spectral equivalence estimates (7)–(8) with
constants independent of mesh-related quantities. We stress that optimal local multi-
level preconditioners PA for the FEM part can be constructed in 3D, see, e.g., [13] and
the references therein, whereas — to the best of the author’s knowledge — it is still an
open problem to construct an optimal preconditioner PV for the BEM part (simple-layer
integral operator) on adaptively refined triangulations.
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