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Abstract. Crossflow instabilities on swept wings lead to an accelerated transition and
therefore greatly increased profile losses. Modern CFD codes therefore must have the
capability to predict crossflow-induced boundary layer transition. For this purpose, an
additional mode of destabilization was added into the framework of the γ − Reθ model.
The Reynolds number ReH based on the local helicity was found to be a key parameter in
order to detect crossflows within boundary layers. The model formulation is in accordance
with the baseline γ−Reθ model, since only local quantities are used. Therefore the model
can be applied on complex three-dimensional geometries. The model was calibrated on
two infinite swept wing test cases, where the Reynolds number and the sweep angle were
varied, respectively. A good match to experimental data was achieved. For the purpose
of validation a 1:6 spheroid was taken into account. Although the prediction is lacking
on this test case, a correct detection of crossflows can be observed.

1 INTRODUCTION

Predicting transition in boundary layers is fundamental when it comes to drag reduc-
tion, as turbulent boundary layers cause significantly higher shear stresses. The transition
of a laminar boundary layer on swept wings can be initiated by four fundamental modes.
These are based on the high turbulence near the wing root, the growth of primary instabil-
ities due to Tollmien-Schlichting waves, centrifugal instabilities resulting in the formation
of Görtler vortices or crossflow instabilities [1, 2]. These modes can promote or delay each
other. This paper is focused on the development of crossflow instabilities.

Crossflow instabilities can occur on swept airfoils under the presence of a pressure gra-
dient. Under these conditions the pressure gradient vector close to the profile leading edge
is not on the same plane as the streamlines of a two-dimensional profile flow, but is ro-
tated by the sweep angle of the profile. Therefore the streamlines around the swept profile
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Figure 1: Sketch of a crossflow profile on a swept wing

are three-dimensionally deflected. This leads to inertial and pressure forces maintaining
equilibrium. Within the boundary layer viscous effects reduce velocity, which results in
lower pressure and inertial forces. Consequently, streamlines within the boundary layer
are less curved.

This change in the streamline curvature induces high velocity gradients, resulting in
the development of secondary flows. The induced boundary layer profile is highly swept
and includes an inflection point within the crossflow component (Fig. 1). This causes an
inflectional instability accelerating transition. As discussed by Arnal and Casalis [3] the
crossflow component of the velocity profile can reach about 5 − 10% of the free stream
velocity in the accelerated areas of the profile leading edge. This causes strong crossflows
resulting in stationary waves. These waves are observed to be directly related to the
presence of primary crossflow instabilities [4, 5]. Traveling wave disturbances indicate the
final stage of transition. These secondary instabilities are resulting from ring-like vortices
that are aligned around the primary vortex [5]. They contribute significantly to the final
stage of the transition process.

When the three-dimensional boundary layer is decelerated further downstream, the
curvature of the streamline at the boundary layer edge changes. The intensity of crossflow
vortices drops immediately. If the transition to turbulence has not taken place upstream of
this point, present instabilities can trigger the development of traveling waves (Tollmien-
Schlichting waves) and thereby initiate natural transition [5, 3].

Deyhle and Bippes [6] investigated the influence of turbulence on the development of
crossflow instabilities. As they pointed out, a rise in the level of turbulence can lead
to a suppressed transition while Tu < 0.2%, in their case. Higher levels of turbulence
(Tu > 0.2%), however, led to an accelerated transition, as traveling waves increase with
turbulence, suppressing the stationary waves [7].

As the level of turbulence rises above Tu = 0.2%, earlier steps of transition are bypassed
and thus natural transition is the dominant phenomenon.

As wall shear stresses of turbulent boundary layers increase up to a factor of four,
in comparison to laminar boundary layers, the resultant pressure losses are significantly
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higher. Therefore, correctly predicting laminar-turbulent transition is an invaluable tool
for aerodynamic engineers. A wide variety of approaches to improve the prediction accu-
racy of CFD solvers have been made in the past few years.

A widely used method in applied aerodynamics is the eN -method which is based on
linear stability analysis [3, 2, 8]. The eN -method is basically designed for two-dimensional
boundary layers but it can be extended to three-dimensional boundary layers, however
it still exhibits some deficiencies [3]. A major disadvantage of this method is that the
N -factor, which is responsible for a critical amplification of linear disturbances, has to be
fit to each test case. Additionally, the application of the eN -method into a RANS code
is complicated by the fact that the boundary layer code has to be solved parallel to the
free stream flow field. Integral boundary layer quantities have to be exchanged between
both applications.

A new approach had been made in terms of the γ − Reθ-Reδ2t-model by Seyfert and
Krumbein [9]. In their work, the γ − Reθ-model by Langtry and Menter [10] had been
extended to predict crossflow-induced transition. The baseline γ − Reθ-model uses a
locally defined streamwise Reynolds number ReV . Analogous to this formulation, Seyfert
and Krumbein used a Reynolds number ReV,y based on the crossflow velocity component
perpendicular to the free stream. As this value reaches a critical level, transition is
initiated. The definition of this critical value is based on the well-known C1-criterion
including a locally evaluated Falkner-Scan-Cooke solution. The resulting model shows
promising results with the investigated NLF(2)-0415 profile as well as the ONERA ’D’
profile. Nevertheless, this model is dependent on the profiles sweep angle, which has to
be given as a boundary condition. Therefore a reduced applicability on complex three-
dimensional geometries is expected by the author.

Based on the γ −Reθ-model a different approach had been made earlier by Watanabe
et al. [11]. It uses the streamline curvature parameter CK defined by Kohama and
Davis [12], and compares this locally defined parameter with a critical value Cthreshold. As
this value is exceeded transition is initiated very abruptly by the use of the separation
induced transition mode. This method is strictly based on local quantities and therefore
applicable on complex geometries but it lacks in the ability to cover flow historical effects.
As described by Arnal and Casalis [3], crossflow instabilities do not need to be present
during the whole transition process but can also initiate natural transition. Therefore,
interacting with the natural transition mode, as done by Seyfert and Krumbein, allows
for a better consideration of physical flow effects.

2 NUMERICAL METHOD

In the present work modelling crossflow-induced transition is based on γ−Reθ-transition
model by Langtry and Menter [10], as it has been used by Watanabe et al. [11] and Seyfert
and Krumbein [9]. The γ−Reθ-model follows the basic idea that only local quantities are
used in order to predict transition. As a result it is applicable on unstructured computa-
tional grids and complex three-dimensional geometries such as the spheroid investigated
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by Kreplin et al. [13] or the segmental swept wing introduced by Petzold and Radespiel
[8]. For this purpose, two transport equations for R̃eθt and γ are used to cover flow
historical effects.
R̃eθt is linked to the Reynolds number based on the momentum loss thickness deduced

from the correlations by Abu-Ghannam and Shaw [14]. Therefore, this mode of tran-
sition covers natural transition, and also bypass-induced transition for higher levels of
turbulence. Whenever the locally defined vorticity Reynolds number

ReV =
ρy2

µ
S, (1)

exceeds a critical Reynolds number based on R̃eθt, transition is initiated. In this case ρ
is the density, y is the distance from the nearest wall, µ is the dynamic viscosity and S is
the shear strain rate. Transition is initiated by increasing the second transport quantity
γ, intermittency. This is representative of the production of turbulent kinetic energy. The
separation induced transition mode is realized by increasing γ directly.

The γ−Reθ-model is implemented into the RANS-solver TRACE. TRACE was devel-
oped by the DLR Cologne in cooperation with MTU Aero Engines AG as an industrial
partner [15, 16]. Therefore TRACE was validated on a broad variety of turbomachinery
and generic test cases. TRACE provides a spatial discretization for convective fluxes with
a 2nd order accuracy based on an upwind scheme by Roe [17]. Diffusive fluxes are dis-
cretized by a 2nd order central scheme. The turbulence model used for the calibration is
the k−ω-model by Wilcox [18] combined with the stagnation point anomaly fix by Kato
and Launder [19].

3 THE SET OF TESTCASES

For the model calibration, two profiles were taken into account. The first is the ONERA
’D’ profile, which was investigated by Schmitt and Manie [20]. It is a section from the
ONERA M6 wing and it is used for calibration on one Reynolds number Re = 1.0 · 106

under varying sweep angles from ϕ = 40◦, 50◦ to 60◦. The second test case is the NLF(2)-
0415 profile which was experimentally investigated by Dagenhart and Saric [2]. On this
test case the sweep angle maintained ϕ = 45◦ and the calibration was conducted for a
Reynolds number from Re = 1.92 · 106 to Re = 3.27 · 106.

The extend of the farfield boundary condition was set to 20 times the profile chord
length in diameter. As the sweep angle of the ONERA ’D’ profile is varied, a single
grid with a ϕ = 0◦ sweep angle was generated and the boundary conditions were used
to change ϕ. Therefore, spanwise boundary conditions are set to periodic. The NLF(2)-
0415 grid includes the ϕ = 45◦ sweep angle and the Reynolds number is varied by the free
stream velocity. In order to minimize computational cost, the spanwise extent h of the
computational grids was minimized so that h

l ONERA ’D’
= 0.75 for the ONERA ’D’ profile

and h
l NLF(2)-0415

= 2.88 for the NLF(2)-0415 profile, respectively. A study was performed
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Table 1: List of boundary conditions

Tu∞ in % LTu in m Ma∞ Re ϕ∞ in deg. α∞ in deg. x/lt,Exp.

ONERA ’D’
1.0 1.3 · 10-4 0.224 1.0 · 106 40 -7.72 0.92
1.0 1.55 · 10-4 0.224 1.0 · 106 50 -9.187 0.44
1.0 1.99 · 10-4 0.224 1.0 · 106 60 -11.74 0.25

NLF(2)-0415
1.0 0.6 · 10-4 0.123 1.92 · 106 45 -4 0.78
1.0 0.6 · 10-4 0.140 2.19 · 106 45 -4 0.73
1.0 0.6 · 10-4 0.151 2.37 · 106 45 -4 0.58
1.0 0.6 · 10-4 0.174 2.73 · 106 45 -4 0.45
1.0 0.6 · 10-4 0.209 3.27 · 106 45 -4 0.33

to ensure that no impact on the results could be observed. All boundary conditions are
summarized in Tab. 1.

4 GRID CONVERGENCE INDEX

Numerical simulations are subjected to different types of errors [21]. One of these is
the discretization error, which is dependent on the computational mesh. Particularly in
terms of numerical model calibrations, an estimation of the underlying discretization error
is required. The procedure of a Grid Convergence Study has been defined as a standard
on ASME V&V 20-2009 [21] and it is conducted in each test case for calibration.

The Grid Convergence Study is based on three different structured grids where the grid
is being refined by a factor of r = 1.45 − 1.5 in each direction (Tab. 2). Therefore, the
total cell count is increased by a factor of r3 per refinement and the similarity to the basic
grid is maintained, since no cell stretching can occur. Integral quantities such as the drag
coefficient cd are determined on each grid. This allows the extrapolation of a cd value for
an infinitely fine grid that does not exhibit any discretization errors. Based on this ideal
cd value, the resulting error on each grid can be estimated. In both test cases, the best
trade-off between accuracy and feasibility was achieved with the medium fine grid.

5 MODEL FORMULATION

The γ − Reθ-transition model provides two paths to influence the transition process.
One path uses the R̃eθt transport equation and another path is to increase γ. The latter
one is used by Watanabe et al. [11] and supports a rapid transition. The first one is used
by Seyfert and Krumbein [9] for crossflow-induced transition, as well as by Herbst et al.
[16] and Dassler et al. [22] for active flow control and roughness-induced transition. The
prior described structure of the γ −Reθ-model implies that modifying the R̃eθt equation
provides an evolving destabilization of the boundary layer. As a result, flow historical
effects can be taken into account. Each excess on R̃eθt introduces further disturbances
into the boundary layer which sum up and finally initiate transition.
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Table 2: Results of the Grid Convergence Study based on cd

i N cd r GCI EERE

ONERA ’D’ p = 2.132
fc,3 1.24 · 106 0.054479 - 0.0452 0.0356
fc,2 3.78 · 106 0.055579 1.45 0.0205 0.0161
fc,1 12.85 · 106 0.056108 1.5 0.0085 0.0068
fe,p=2.132 ∞ 0.0565

NLF(2)-0415 p = 1.86
fc,3 0.96 · 106 0.0835 - 0.2351 0.1723
fc,2 3.06 · 106 0.0925 1.47 0.1142 0.0837
fc,1 10.5 · 106 0.097 1.5 0.0507 0.039
fe,p=1.86 ∞ 1.009

As observed by Arnal and Casalis [3], instabilities may be induced into the boundary
layer by crossflow vortices, which trigger the development of Tollmien-Schlichting waves
further downstream. This physical relationship can be realized by using R̃eθt to destabilize
the boundary layer in case a crossflow is present. This persisting disturbance makes the
boundary layer prone to further destabilization. Therefore, R̃eθt is utilized in the present
model.

The transport equation

∂(ρR̃eθt)

∂t
+
∂(ρUjR̃eθt)

∂xj
= Pθt +

∂

∂xj

[
σθt(µ+ µt)

∂R̃eθt
∂xj

]
(2)

for the Reynolds number based on the momentum thickness is modified by the production
term

Pθt = cθt
ρ

t
(Reθt − R̃eθt)(1.0− Fθt), (3)

where Reθt is the local Reynolds number and R̃eθt is the transport quantity. Reθt is
correlated to the findings of Abu-Ghannam and Shaw [14], therefore it considers the
effects of the streamwise velocity gradient as well as the grade of turbulence.

The production term Pθt is used to modify R̃eθt so that it is equal to Reθt outside of
the boundary layer. In order to blend in Pθt the function Fθt is introduced. Within the
boundary layer Fθt = 1.0 and outside the boundary layer it is set to Fθt = 0. By means
of diffusion, R̃eθt is finally transported into the boundary layer, where it interacts with γ.

In the present crossflow model an additional production term

PCF = −min
(

max
[
0,
( ρ

1000 · t
·
(ReH

6

)c1
·
(
ReΩ

)c2
·
(12 θ

y

)c3
− c4

)
· c5

]
, c6

)
(4)

is added to Eq. 2. PCF is always negative, since lowering R̃eθt is triggering transition.
This production term is the key part of the present crossflow model. It consists of three
terms which quantify the intensity of the crossflow and therefore the resulting disturbance
of the boundary layer. Each of the terms is weighted by the exponent c1 to c3.
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The first and most important term is the Reynolds number based on the momentum
thickness as well as the local helicity

ReH =
θ

ν

√
θH. (5)

The focus is set on the helicity

H =
∣∣∣ui · ωi∣∣∣ (6)

which is the magnitude of the scalar product of the velocity ui and the vorticity ωi.
Therefore, it is maximized if the flow is rotating around the velocity vector. This is
exactly what is observed in the area of crossflow instabilities in an accelerated boundary
layer. The occurring vortices are aligned under a very low deflection angle assigned to
the main flow vector [4, 3, 1]. This phenomenon is closely connected to those modelled
by Herbst et al. [16] in the case of a jet in crossflow. As a result, the intensity of H is
directly related to the sweep angle and the velocity. Additionally Reynolds dependencies
are covered by integrating H into a formulation of a Reynolds number ReH .

Another term is the vorticity Reynolds number

ReΩ =
ρy2

µ
Ω (7)

similar to the original formulation of Langtry and Menter [10], though it is rather based
on the magnitude of the vorticity tensor Ω. This formulation goes along with the findings
of Kato and Launder [19] who stated that S ≈ Ω along most parts of the boundary layer,
except the stagnation point where S exceeds Ω. As crossflow vortices start rising close
downstream of the leading edge, the use of S would not be productive physically. It
is therefore replaced by Ω. ReΩ gives the ability to weight the influence of streamwise
velocity components, independently from the crosswise velocity components.

The last term θ
y

is used for correction. It was observed that ReH based on θ operates
well on a few test cases. On others, better results were obtained by the use of y instead.
Therefore, θ

y
was added to vary the two characteristic length scales independent from each

other.
The crossflow model uses three additional constants c4 to c6. c4 is a limiter that has

to be exceeded before the model starts to generate disturbances. The constant c5 weights
the overall destruction of R̃eθt and c6 is used to border a maximum disturbance. The
factor ρ

t
is added to maintain the same dimensions of R̃eθt in Eq. (2) and (3). Additional

factors are included to raise all terms in Eq. (4) to an equal level.

6 MODEL CALIBRATION

Since the model is based on six calibration constants, which are linked in a complex
manner, the calibration of this model is particularly challenging. In order to face up this
task, an environment was created that allows an automated evaluation and presentation

7



Christoph Müller, Florian Herbst

Figure 2: Chordwise distribution of PCF
Figure 3: Integral values of PCF on the
NLF(2)-0415; Re = 3.27 · 106

of the calibration results. Furthermore new sets of calibration constants are suggested
and a new generation of simulations is set up in a continuous loop.

The definition of new constants is based on an estimation function. To this end the
maximum values of the parameters within the boundary layer, such as ReH(x), are plotted
against the chord length. This allows the definition of a production term PCF (x) (Eq. 4
and Fig. 2) along the chord and furthermore to estimate the overall produced disturbances
from the leading edge to the transition point by means of

PCF,sum =

∫ xt

x=0

w(x) PCF (x)dx. (8)

The weighting function w(x) reflects the local receptivity of the boundary layer. It will
not be discussed in this context. In Fig. 3 the link between the estimated PCF,sum and
the transition positions, resulting form the CFD, are plotted. This basic idea is followed
to define a new set of constants in an inverse procedure. As a result, only a few CFD
calculations have to be performed in comparison to the broad series of constant sets that
are evaluated.

7 RESULTS

Based on the calibration environment described in the previous section (Sec. 6), a set
of calibration constants was defined that suits for all test cases. As presented in Fig. 4,
the crossflow model can show a great dependency on the sweep angle and the Reynolds
number. This strong dependency cannot be observed on the baseline γ − Reθ-model.
The observed results closely follow the experimental data and therefore underline the
great potential of the investigated approach. The set of constants underlines the strong

c1 = 0.548 c2 = 0.1912 c3 = -0.298
c4 = 0.0 c5 = 60.0 c6 = 1666.5

influence of the helicity Reynolds number ReH that is the dominant factor since it is
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(a) ONERA ’D’; Re = 1.0 · 106 (b) NLF(2)-0415; ϕ = 45◦

Figure 4: Comparison of the predicted and measured transition location

(a) Skin friction coefficient (b) Shape parameter

Figure 5: Quantitativ evaluation of the transition location

weighted with the exponent c1 > c2 > c3. The constant c3 turns out to be negative. This
follows the expectations described in Sec. 5.

(
θ
y

)c3 makes y more influential.
The convergence of the simulation was ensured on all test cases except the ONERA ’D’

profile at ϕ = 60◦. In this case, the transition position alternated strongly between 0.16 <
x/lt < 0.55. The same tendency was observed when using the baseline γ − Reθ-model,
although in this case a delayed convergence was achieved. Therefore these convergence
problems are not initiated but amplified by the crossflow model. The final transition
location x/lt = 0.355 was defined as the arithmetic mean of the maximum and minimum
value.

In Fig. 5(a) the skin friction coefficient cf and in Fig. 5(b) the boundary layer shape
parameter H12 are plotted along the dimensionless chord. The skin friction shows a sharp
rise, close to the transition point x/lt. This is a clear indicator of a completed transition
process. Similarly the shape parameter drops from H12 ≈ 2.59 (suitable for a Blasius
boundary layer) to H12 ≈ 1.4, representing a turbulent boundary layer.
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(a) Experimental (b) TRACE γ −Reθ crossflow model

Figure 6: Comparison of the predicted and measured skin friction coefficient cf along the 1:6 spheroid
surface; contour lines indicate levels of ReH ; Re = 6.5 · 106; α = 15◦

8 MODEL VALIDATION

The modified γ−Reθ-model was validated on a 1:6 spheroid, which was experimentally
investigated by Kreplin et al. [13]. The spheroid exhibits complex three-dimensional flow
structures and therefore represents a challenging test case for transition models. In order
to maximize the crossflow intensity, a setup with a high Reynolds number Re = 6.5 · 106

and a high angle of attack α = 15◦ was chosen. The level of turbulence is set to Tu = 0.1%
at the spheroid tip.

When numerical and experimental results were compared in terms of the skin friction
cf (Fig. 6), a high grade of compliance was observed at the upper part of the spheroid 1©.
Close to position 2©, a peak value of cf was predicted at x/l = 0.05 while an equivalent
peak was measured at x/l = 0.2. The major discrepancy was found at the lower part
close to the position 3©. The authors assume that this might be the result of an excessive
stabilization of the accelerated boundary layer. Since high levels of ReH are indicated
by contour lines the model does detect the present crossflow but is not able to overcome
the high grade of stabilization. These elevated ReH levels can be found at position 4©
correlating with a sharp rise of cf close to x/l = 0.85 in the experimental data. As a
result the authors want to state, that the fundamental behaviour of the crossflow model
corresponds to the flow physics, however there is still a demand of more considerable
modelling on this test case.

9 CONCLUSIONS

In the present paper, an extension of the γ − Reθ-model is presented. This allows
the prediction of crossflow-induced transition on swept-wing flows. The fundamental
parameter of this transition model is ReH , the Reynolds number based on the local
helicity. It turned out that ReH is a useful and reliable parameter for the detection of
crossflows.

The model was calibrated by using an individually designed environment that is able to
preliminary estimate the fitness of a set of calibration constants, followed by a suggestion
of an improved constant set.

As the model is based on six constants, it was possible to calibrate it highly accurately
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on two different experimentally investigated test cases of infinite swept-back wings. In
each of these test cases, either the Reynolds number or the sweep angle, were varied.
Therefore, major effects leading to crossflow instabilities can be captured by this model.

Since the model formulation is based on local variables, it can predict transition on
complex three-dimensional geometries. The ability of the ReH parameter was proven on
the spheroid investigated by Kreplin et al. [13], however more intensive model access at
high Reynolds numbers is obviously required. In the future, the segmental swept wing
introduced by Petzold and Radespiel [8] will be an appropriate validation test case.
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