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Abstract: To analyze the failure mode and final deformation of concrete rectangular plate 

under explosive loading, the energy method and plastic hinge theory is employed by 

regarding concrete as perfect rigid-plastic material. Large plastic deformation is usually 

brought about by explosion applied to the plate, while it is constrained by supporting 

boundary from which compressive reaction would effect on the plate when large 

deformation takes place. By assuming that the compressive reaction is acted on the 

equilibrium surface, a reaction parameter is defined in the motion balance equations of 

small deformation to take the advantages of supports into account for large deformation. 

There are two different failure modes of plate under different explosive peak overpressures, 

so the motion balance equations during and after the action of explosive loading are 

deduced in accordance with small or large deformation, which contributes to the failure 

process and final deformation of plate by employing moving hinges theory. In order to 

verify the theoretical method, numerical simulations of reinforced concrete plate under 

explosion are carried out to investigate on how the explosive charge impacts on its failure 

modes. By comparing the numerical results and theoretical ones, the analysis method in this 

paper is proved effective and available to analyze the plastic deformation and failure modes 

of reinforced concrete rectangular plate under explosion. 

1 INTRODUCTION 

Usually, Limit Analysis Method or Classical Yield Theory is often employed to research 

on the deformation and failure of reinforced concrete plate acted on static loads. Subjected

http://dict.cnki.net/dict_result.aspx?searchword=%e6%9e%81%e9%99%90%e5%88%86%e6%9e%90%e6%b3%95&tjType=sentence&style=&t=limit+analysis+method
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to dynamic loads, the plastic behavior of reinforced concrete slab comes up ahead of that 

under static loads. So the perfectly rigid-plastic model is proposed to analyze the 

deformation of reinforced concrete plate under explosive loads. 

In order to simplify the calculation, the blast load is assumed as triangular load with 

rising period 
[1]

: 
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in which mt is the moment when peak load pressure comes up, mp is the peak pressure. 

2 THE BASIC EQUARIONS OF PLATE 

The reinforced concrete material is idealized as completely uniform, continuity, isotropic 

rigid-plastic material, and the size change of the specimen with deformation is ignored. 

When determining the motion and geometric equilibrium equations, the theory considering 

no strain rate, static yield condition and plastic flow rule are employed. If the thickness of 

plate is h , the uniaxial tensile yield stress isY , then the plastic ultimate moment on per unit 

plate is 2

0 0 / 4M h . When Tresca yield criterion applied, there is 0 Y  ; Mises yield 

criterion applied, 0 2 / 3Y  .  

Yield line theory, namely broken line theory, is established by extending plastic hinge 

theory of beam to shell structures, while plastic hinge of shell structures shows as a narrow 

plasticity zone along one direction 
[2]

. There are some assumptions of yield line to structure 

its shape: the yield line is produced firstly where ultimate bending moment comes into 

being; along with the line only the effect of moment is accounted in while the torque and 

shear are ignored; no elastic deformation of rigidity pieces between yield lines is considered; 

and viscous damping are ignored
[3]

. 

 

a. Failure mode A                        b. Failure mode B 

Fig.1 Two patterns of the failure mode 
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Based on the assumptions and experiments, the ultimate states of rectangular 

rigid-plastic plate under uniform load  p t , namely the plastic failure modes with two 

possible patterns 
[4]

are as shown in Fig.1. 

According to the principle of maximum consume energy, all the power of external force 

is consumed by the yield lines, then corresponding limit equilibrium equations are: 
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in which   is boundary supporting parameter, and 1   means simply supporting, 2   

clamped supporting; ,p p   are dimensionless parameter of rigid area at plastic limit 

states( 0 1/ 2,0 1/ 2p p     );  is length-width ratio ( 1b a   ); 2

0 0 0/p P b M , in which 
0p  

is plastic limit load. 

3  MEMBRANE FORCE EFFECT 

Large deformation of shell structure comes up when impact load applied, and tensile and 

flexural capacity of plate will be strengthened by the reaction force of supports. The effect 

is similar to the tension increased by large deformation of thin film, so it’s called membrane 

force effect. 

Under the united action of bending moment and membrane force, the rate of plastic 

power consumed by unit length of yield line is
[5]

: 

       ( )i iD N M                                    (3) 

where   is deflection of yield line; N and M  are membrane force and bending moment 

respectively; 
i  is relative rotation angle between both sides of yield line. 

Yield criterion of maximum normal stress with effect of both bending moment and 

membrane force accounted in is: 

 
2

0 0/ / 1M M N N                                 (4) 

in which 0 0,M N  are plastic ultimate moment and tensile stress respectively. The nonlinear 

function of yield surface is too complicated to employ, so the yield condition is simplified 

as two separate conditions: 

/ 1, / 1p pM M N N                                (5) 

Based on associated flow rule and Drucker postulate, the dissipation function of yield 

lines of the plate can be obtained
[6]

: 
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So the total power consumption of yield lines under the united action of bending moment 

and membrane force is: 

i
mn i

l
i

J D dl                                   (7) 

in which il  is the length of yield line NO. i. On the other hand, when only bending 

moments acted on, the power consumption is: 

0m i i

i

J M l                                   (8) 

Based on the energy dissipation principle, the corrected parameter is defined to 

characterize membrane force effect by the ratio of the power consumptions: 

mn

n

m

J
f

J
                                    (9) 

By introducing membrane force factor, namely replacing 
0M  by

0nf M ,the  motion 

equations of large deformation for failure mode B can be obtained: 
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in which,  is dimensionless moment ( 2

0t M Hb  ); 
1 1 2 2 1 2b/ H, a/ H, ,       is rotation 

angle around boundary of rigid block ① and ②;     2

0/p p t b M  . 

When δ=1/2, the corresponding motion equations for failure mode A can be derived. 

For Eq. (10) is ordinary differential equations about 
1( ), ( ), ( )      and

2 ( )  , the relative 

differential equations can be obtained: 

2( )(2 3 ) (1 ) ( ) 6I p          ， 2 2( )(2 3 ) (1 ) ( ) 6I p               (11) 

By substituting 0  , and combining static limit equilibrium Eq. (2-B) and Eq. (10), the 

critical load is brought about: 

   * 2 2 * 2

0 0 0 0 0 01 / , 4 1 / 3 4p pp p p p                       (12) 
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Define critical parameters
0p p  . For

0p p  ,1    . The critical load of failure mode A 

and B can be obtained by insetting 
0 1/ 2   into Eq.(12): 

2 2 2(3 4 ) 2 (3 4 )cr p p p p p                            (13) 

If
0crp p , only model A will come up with no plastic flat area during the whole 

response process. When 1  , 2cr  ; When 2cr  , 3cr  . 

4  DYNAMIC RESPONSE OF A CLAMPED RECTANGULAR PLATE UNDER 

EXPLOSION LOAD 

If the peak pressure is less than limit load
0p , the plate will be at rigid state. Here the 

plastic deformation of the rectangular plate is analyzed by applying the secondary explosion 

load ( 0 m 0crp p p  ) and higher load ( m 0crp p ). 

Considering the hysteresis of material motion, it is more practical to divide the motion 

modes according to deflection. The deflection limits should be defined as 1/ 5   based on 

classical small deformation theory of thin plate. Here   is the ratio of the deflection 0 in 

the center and thickness H : 

0 1

1
0 0

1 d
b dt d

H H dt

  
                             (14) 

4.1 The movement patterns of rectangular plate under secondary load  

Small deformation of mode A comes up firstly under secondary load ( 0 0m crp p p  ), 

namely
0 1/ 2  . The stage of 0p p  can be ignored because of short duration. The initial 

moment 
0t of the deformation can be obtained by  0 0p p  . Motion equations during this 

stage can be obtained: 
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Based on the angular velocity 
1   of rigid piece around boundary, the deflection can 

be derived by  
0

1 1 11d



      . By insetting

1 1/ 5  , the critical time
1t  when large 

deformation is reached can be calculated. 

4.1.1Motion model Ⅰ 

1 st t means that large deformation has been reached before the explosion load ends, as 

shown in Fig. 2. 
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Fig.2 Time history of motion model (1-A)  

During 1 st t t  , the motion equations of plate are: 

      3 2 2

12 1 22 2 12 222 24 2 3 2 3 4 96 2p f p f                 ； ；          (16) 

When st t , the action of load is over. Until the development of yield line stops, the 

motion equations are: 

 3 2

13 1 23 2 13 2324 ; 2 3 96 ; 2f f                            (17) 

To determine the moment 1f  when the motion stops, inset  3 1 0f   . The final deflection 

can be obtained: 
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0 1
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4.1.2 Motion modelⅡ 
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Fig.3 Time history of motion model (2-A) 
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1 st t means that the small deflection continues during and after the explosion load acted 

on, as shown in Fig. 3. 

After the load acted on, the motion equations of plate are expressed with that of small 

deflection: 

 3 2

14 24 14 2424; 2 3 48 ; 2                                    (19) 

According to 4 0  , the ending moment 2f can be derived. The final deflection is: 

   
0

4 1 11 4 14

s f

s

d d
 

 
                                (20) 

4.2The movement patterns of rectangular plate under high load 

Under high load( 0m crp p ), the failure mode B comes up at first, then returning back to 

mode A. Regard the stage of
0crp p  as rigid state of the plate. By insetting 

 0 0crp p   into the expression of explosion load, the initial moment 
0t
 can be obtained. 

The motion equations of small deflection after 
0t
  are: 
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d
p

d

            

      


 

  

       

 
               (21) 

Differential equations of the yield line expressions can be derived: 

 212 (1 ) ( ) / ( )(2 3 )p I            ，  2 212 (1 ) ( ) / ( )(2 3 )p I                    (22) 

The initial value of 0 0,   can be obtained according to static limit equations, thus 

deriving    ,     . The deflection at this stage is: 

 
0

1 d



    

                                    (23) 

The critical time 2t when large deformation is reached can be obtained by insetting 

1/ 5  . 

4.2.1Motion model one 

2 st t  means that there comes no large deformation during the process. Then the 

moment 1lt  when the motion transforms from mode B to mode A can be derived by 

calculating  1 1/ 2l   . Whether the moment is before or after the acting time st contributes 

to two different situations.  

(1) 1l st t , which means the transforming moment is ahead of the acting load ending, the 
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time-history is as shown in Fig. 4. 
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Fig.4 Time history of motion model (1-B) 

During 1l st t t  , the motion equations can be expressed as: 

   3 2 2

1 2 1 22 ( ) 24; 2 3 2 ( ) 3 4 48 ; 2p p                                       (24) 

When st t , small deformation of mode A continues, of which the motion equations are: 

 3 2

1 2 1 224; 2 3 48 ;2                                    (25) 

When the motion of plate stops, meaning of 0  , the finish moment 3ft  can be derived. 

The final deflection is: 

     
1 3

0 1
1 1 1

l s f

l s

d d d
  

  
                               (26) 

(2)If 1l st t , which small deformation of mode B continues during and after the explosion 

load acted on, the time-history is as shown in Fig. 5.  
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Fig.5 Time history of motion model (2-B) 
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After load acted on,
1s lt t t   , small deformation of mode B develops until 1/ 2  . The 

motion equations are: 

   3 3 2

1 2 1 2
2 3 12; 2 3 12 ;                
                    (27)  

By insetting 1/ 2  , the moment 1lt

when the deformation of plate transforms from mode 

B to mode A can be obtained by  1l 




.  

When
1lt t  , it comes to be small deformation of mode A, and the motion equations are: 

 3 2

1 2 1 2
24; 2 3 48 ; 2             

                     (28) 

The moment 4f , when the motion of plate stops, can be derived by assuming 0 
 . 

Then the final deflection is: 

     
1 4

0 1
1 1 1

s l f
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d d d
  

  
            



         
                  (29) 

4.2.2Motion model two 

2 st t means that the large deformation sets out before the acting load ends. 

During 2 st t t  , the motion equations within membrane force factor employed are: 

   

   

 

3 2

1 V 1

3 2 2

2 V 2

1 V 1 V 2 V

2 3 ( ) 3 4 12

2 3 ( ) 3 4 12

( );

p f

p f

d
p

d

     

      

      






  

   
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 

              (30) 

Until when the deformation of the plate transforms from mode B to mode A, the 

moment 2lt can be determined by assuming 1/ 2  .  

(1)If 2l st t , the transformation moment of mode B and mode A is ahead of the load ends, 

and the time-history is as shown in Fig. 6. 
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Fig.6 Time history of motion model (1-B) 

During 2l st t t  , the motions equations of large deformation with mode A applied are: 

       

 

    

3

1 V 1

2

2 V 2 1 V 2 V

2 2 4

2 3 2 3 4 9 6 ; 2

p f

p f

  

       

 
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          (31)

 

When
st t , the large deformation with mode A continues and the motion equations are: 

 3 2

1V 1 2V 2 1V 2V24 ; 2 3 96 ; 2f f                             (32) 

When the motion of plate stops at the moment 5ft , which can be determined by  V 5 0f   , 

the final deflection can be calculated: 

       
5 2 5

0 2
V V V 1V 1 V 1V V 1V

f l s f

s l s

d d d d
   

   
                 

                     (33) 

(2)If
2l st t , the large deformation with mode B continues during the load acting on, as 

shown in Fig. 7. 
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Fig.7 Time history of motion model (2-B) 

When
2s lt t t   , the motion equations of plate are: 

            
   3 3 2

1 21V 2V 1V 2V
2 3 12 ; 2 3 12 ;f f                                (34)

 

By assuming 1/ 2  , the transforming moment 2lt
  can be determined. 

When 2 6l ft t t   , large deformation with mode A comes up, of which the motion 

equations are: 

               
 3 2

1 21V 2V 1V 2V
24 ; 2 3 96 ; 2f f             

                  (35) 
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When the motion of the plate stops at the moment
6ft , which can be determined by

V
0 

 , 

the final deflection can be obtained: 

               
2 2 6

* * * *

0 2 2
1Ι V 1ΙVV V 1V V 1V

s l f

s l

d d d d
   

   
                    



    
       (36) 

During the whole analysis, the moment of plate stops during a certain stage hasn’t been 

checked. So by checking the moment after the expression of yield lines being calculated, the 

complete deformation process of the plate under explosion load can be obtained.  

5 NUMERICAL EXPERIMENTS 

5.1The establishment of the numerical model 

In a numerical experiment, assume the air as ideal gas, specific heat ratio 1.4  , 

density 3

0 =1.29 /kg m , and the initial internal energy 5 3

0 2.5 10 /E J m  . 

For TNT, the initial density 3

0 =1630 /kg m , initial internal energy of unit 

volume 3 3

0 6.0 10 MJ/mE   . JWL model is simulated to explosive in numerical analysis, of 

which material parameters are determined by test.  

With the material model JOHNSON_COOK proposed by Johnson GR, the parameters of 

concrete (compressive strength 48MPa, density 3

0 2440kg/m  ) was provided
[7]

. In a similar 

way, the parameters of concrete (35Mpa, 3

0 2550kg/m  ) can be obtained, as shown in   

Table 1. 

Table 1    The parameters of reinforced concrete(35MPa) in JHC model  

RO 

(kg/m
3
) 

G  

(Gpa) 
A  B  C  N  

'

cf  

(MP) 

T  
(MPa) 

0EPS  EFMIN  

2550 12.78 0.79 1.6 0.007 0.61 35 3.6 1
E
-6 0.01 

SFMAX

(GPa) 
cP  

(MPa) 
crush  lP  

(GPa) 
lock  1D  2D  1K  

(GPa) 

2K  

(GPa) 

3K  

(GPa) 

700 11.67 6.85
E
-4 0.038 0.05 0.0368 1.0 85 -171 208 

To take the minimum tensile strain as failure criterion, the strain rate sensitivity should 

be considered. So the failure stain of concrete in this numerical experiment is 0.001. 

5.2 Different failure modes  

The reinforced concrete plate, with size of 1000mm 2000mm 100mm  , the steel of 8 

mm-diameter and 235 MPa -yield stress, is taken as objects. By the layout with double-deck 

and two-way, reinforcement distribution modes of long side is 100mm 10  and that of short 

side is120mm 17 .  

Explosion of different charge(0.81kg、1.25kg、1.82kg and 2.50kg)is employed to act on  

the reinforced concrete slab, which is simply supported, and the explosive distance is 0.5m. 



First A. Jian He, Second B. Kongming Wu (Coauthor)  

12 

The time history of displacement in the center of plate is as shown in Fig.8. 
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Fig.8 Time history of displacement in the center of plate 

Fig.8 tells that, with the explosive charge adding, the displacement of the central region 

increases gradually, and the whole elastic deformation turns to stable plastic deformation.  

The comparison of theoretical analysis results and numerical ones is as Table.2. 

Table 2   Comparison between numerical simulation and theoretical analysis 

charge(kg) 

terms 
0.81 1.25 1.82 2.5 

Load Low Secondary Secondary Higher 

Motion mode ---- SEC-2 SEC-1 HIG-1-B 

Theoretical 

displacement(mm) 
---- 30.55 79.51 74.46 

Numerical 

displacement(mm) 
2.50 10.20

 
20.10

 
23.20

 

As shown in Table.2, the results of theoretical calculation are bigger than the numerical 

ones in general. This is because of the ignorance of the strengthening effects of materials etc. 

in theoretical analysis. So the numerical study which took these effects into account is more 

approximate with the practical. But the similar tendency and results confirm the efficiency 

of the theory discussed in this paper. 

6  CONCLUSION 

Theoretical analysis and numerical simulation are both employed to analyze the dynamic 

response of reinforced concrete rectangular plate under explosive load in this paper. The 
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theory performed in this paper is proved efficient and available with the comparison of 

theoretical results and numerical ones. The main conclusions are: 

(1)According to the energy method and the plastic hinge line theory, the effect of the 

membrane force on neutral plane applied on plate with large deformation is taken into 

account. The membrane force factor is introduced into the motion equations. 

(2)When under secondary and higher explosion load, the motion and deformation of the 

plate are analyzed with the two different failure modes and corresponding motion equations. 

And the whole process of the deformation is received by numerical calculation.
i
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