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Abstract. An accurate explicit integration algorithm in the predretorrector form for finite
element computations of wave propagation and contact @nubin solids is presented. The
nominated algorithm, with the component-wise partitiorqfiations of motion to longitudinal
and shear parts, is designed to more precisely integrate pr@pagation in accordance with
their different propagation wave speeds and their stgHilihits. The suggested three-time
step integrator is fully explicit with a diagonal mass mataquirement, second-order accurate,
conditionally stable and exhibits minimal sensitivity lbglour on the time step size satisfying
the stability limit. The submitted time algorithm is ablelie easily implemented into standard
finite element codes for general non-linear dynamics proble wave propagation, dynamic
plasticity with small and large deformations, dynamic &poopagation with cohesive fracture
models and impact/contact problems. In a numerical testavfewpropagation in a disc, we
compare results obtained by the proposed scheme withrexistinventional time integrators.

1 INTRODUCTION

The direct time integration is an up-to-date standard todinite element (FE) solution of
transient and wave propagation problems [1]. An explicithod is implemented in an each FE
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software (e.g. ABAQUS, ANSYS, LS-DYNA, PAM-CRASH, TAHOE, .)..The contribution
deals with an explicit algorithm suitable to suppress spusioscillations in FE computations
of linear and non-linear wave propagation problems in solithe eliminating and diminishing
of spurious oscillations in FE simulations of discontinsauave propagation is an up-to-date
open problem to research study.

Frequently, time integration schemes are categorizeaxybcit methods [2], implicit meth-
ods [4], and implicit-explicit methods. Essentially, tmeplicit method needs factorization of
an effective matrix, one or more times per step, and the ndaghexplicit in the opposite case,
employed a diagonal (lumped) mass matrix and a vector sflyeAs for the time integration
of discretized equations of motion, for wave propagatioadhds, the central difference (CD)
method [2] is most widely and commonly used for explicit trea@nt in time and the New-
mark (average acceleration) method [3, 4] for implicit timeegration. Implicit computation
needs a much larger computation effort per time step dueetsdlving a linear matrix system.
However, implicit methods are derived to have unconditistebility then the time step size is
chosen freely based only on the physical problem to be s¢Medn the other hand, explicit
methods need only a vector solver, but mostly are merelyitondl stable. Thus, the time step
size has to satisfy a stability limit [2].

Among explicit time integration methods, the nearly unseechoice is the central difference
method which possesses no numerical dissipation for liR€agdiscretization with a diagonal
mass matrix. In one-dimensional case, if a linear finite eleihnmesh is generated so that the
stability limit is the same for each element, results oladiby the central difference with the
diagonal mass matrix are very close to exact solutions. phimal time-consuming and natural
choice of the time step size is then equal to the stabilitytliffor that case, spatial dispersion
errors of the linear FEM with the diagonal mass matrix [5] gediod elongation behavior of
the central difference method [1] suppress each other, fiytio one-dimensional case [6].
However, in practice, it is not feasible to employ a mesh s the critical time step limit
is the same for all elements, thus results by the centratréifice method produce spurious
oscillations.

By assuming a theoretical prediction in multidimensional/gvaropagation in unbounded
continuum, longitudinal and shear waves propagate wiferdiht speeds;, andcgs [7]. There-
fore, the mismatch in the wave speeds of the two types of wangonents produces spurious
oscillations in numerical results. In the central diffesermethod, a single-time step compu-
tation with a time step size, which is given by the fastesppgating longitudinal wave, is
employed. Thus longitudinal waves are integrated morerateuhen shear ones. This is the
main disadvantage of the central difference method usingadelling of multidimensional
wave propagation problems in solids. For that reason, afination of the central difference
method based on the component-wise partition of equatibm®bon to longitudinal and shear
parts has been found [8, 9]. In this paper, we present theghoeaorrector form of the nom-
inated explicit time scheme exploited quadrilateral anxbhedral finite elements. Moreover,
results obtained by the time scheme inhibit excellent steesl strain histories with minimum
spurious oscillations near theoretical wavefronts.
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2 FINITE ELEMENT METHOD IN SOLID DYNAMICS

Spatial discretization of a general dynamic problem by FEModuces the second-order
ordinary differential system [10]

Mu" - fezt(tn) - fint (un’ ﬂn? tn) 9 tn e [tO? T] (1)
u(t’) =u’, u(t®) =v°

whereM is the mass matrix,,; is the time-dependent external load vecfyy, is the vector
of generally non-linear internal forces, the vectars u” andu™ contain nodal displacements,
velocities and accelerations at the tinie respectively. Quantities with the superscriphave

a meaning of the approximation of quantities at the tifhes.g.u™ ~ u(¢") and so on. Vectors
u’ andv® get values of the initial state for nodal displacements agidaities at the time°.
The discretized time is considereds= nAt, whereAt is the time step size. The external
loadingf.,; is usually a consequence of application of traction boundanditions, body forces
or contact forces. We assume a diagonal mass mixdrix

3 THE CENTRAL DIFFERENCE METHOD

In this paper, the main attention is paid to explicit FE cotagians, therefore we introduce
the algorithm of the central difference method. The preudicorrector form of the central
difference method [1] to solve a general dynamic problenm\ggometrical and material non-
linearities is following.

Predictor phase

. . .
s =u" + At + —i"

2
n At
=0 (2)
i =0

The system of equations of motiortonstituted at the tim&**! to solve:

MAGL, = £ — £ (anf, a1 3)
Corrector phase
wi! = !
=il Sla @
it = gy

The aforementioned process is fully explicit with a diagamass matrix. In addition, the
combination of the central difference method and the diagorass matrix of linear FEM pro-
duces a providential numerical effect due to the spatiatamgboral discretization. In this case,
dispersion errors are mutually repressed by a suitableetudithe time step size [6].

3



R. Kolman, S.S. Cho and K.C. Park

Generally, explicit methods are only conditionally stalfe time step sizét has to satisfy
a stability limit in the formAt < At., whereAt. is the critical time step size. The critical
time step size\t. securing the stability of the central difference methodddinear undamped

system takes the form [11]

2
At, =

()
wma:p

wherew,, ., being the maximum eigenfrequency of the system, relatdietgéneralized eigen-
value problenKu = AMu, takingw? = X and the stiffness matriK of the linearized system
(1) [1].

In wave propagation problem in solids, the stability linstapproximately equal to a time
required to run longitudinal elastic wave with the spegdhrough the smallest finite element
constituting a FE mesh [1]. For some element types and umifelE meshes, the critical time
step size is estimated under elastic wave propagation fuleumb At, = H/c,, where H
is the characteristic length of the smallest element of a EEhm For uniform 4-nodes square
guadrilateral and 8-nodes cubic hexahedral finite elemémgsstability limit is estimated as
At. = H/cp, whereH is the element edge [1].

4 A NOVEL TIME INTEGRATION SCHEME

In this section, the predictor-corrector form of the timheame suggested in [9] is mentioned.
Moreover, we describe it in a step-by-step flowchart (Tapbhbyv we have to implement the
algorithm into standard finite element codes exploited gledral and hexahedron linear finite
elements and a diagonal mass matrix.

In [8, 9], it has been brought about an idea a modification efcbnventional central differ-
ence method being able to suppress spurious oscillatiomsnrerical solution by lower-order
finite elements. This mentioned time integration is basedamponent-wise partitioned equa-
tions of motion (1) to longitudinal and shear component chpproximated displacement field
and also based on pullback time integrations [8]. The eléah@mponent-wise partitioned
equations set have to form [9, 12]

Longitudinal component equationM*uj = £7,, ; — £7, 1 (6)
Shear component equationM*ig = £, ¢ — f5,; 5

where subscriptd. and S correspond to longitudinal and shear approximated disphent
fields,f; andfg mark decomposed forces, so tifiat= f; + 5, andM* denotes the elemental
mass matrix. Practically, force decomposition is given hytiplying elemental force vectors
by decomposed matrices for a longitudinal and shear pgrandD¢, as [9, 12]

e _ eT ge e _ eT ge

fe:ct,L - DL fe:ct? fint,L - DL fint (7)
e _ eT ge e _ el fe

fewt,S - DS fea:t? fint,S - DS fz‘nt

Then global vectors of external and internal decomposexfoare assembled in a standard FE
fashion to the vectorg,; andf;,,;.
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Longitudinal and shear component-wise partitioning neagjD¢ andD¢, possess the fol-
lowing properties [9]:

Partition of unity: D¢ +D§ =1¢ (8)

Projector property: D¢ D¢ = D¢, DY'D$ = D¢ 9)
Symmetry: D¢ = D¢, DY = D¢ (10)

Orthogonality: D¢D% = D¢D¢ = 0° (11)

Element mass commutability: D¢'M¢ = M°D¢$, DE'M°¢ = M¢D¢ (12)
Element mass orthogonality:  D$'M°D¢ = M°D¢ D¢ = 0° (13)

wherel* is the unity matrix.
In Table 1, the nominated three-time step algorithm is diesdrin details and its step-by-
step flowchart is depicted. The time scheme is applicablefiila predictor-corrector form

for a general non-linear dynamic problem. The variable tstep sizeAt" is assumed to be
adopted at each time step.

Table 1: A step-by-step flowchart of the suggested scheme in theqtoeatorrector form.

A.Initial calculation at the time?°
1. Initializeu®, u°, all internal variables from the restart and compMEe.
2. Computef™t(u®, u?, ), fe2t(¢0), andi® = (MO)1(fext — fint),
3. Decomposé’ so thatii® = w9 + u%
B. For each time step
(Set required time step sizes
1. Estimate stability limits ad\t? = H™/c} andAté = H™/cL.
2. Set time step sizAt" = o At? so thate} € (0,1].
3. Computen} = At"/At} andad = At™/AtL.
(First sub-step) - Front-shock including integration of longitudinal com-
ponent
1. We knowu™, 0", ", i}, and all internal variables at the time
2. Sett™F =" + Aty,  ujfl =u"+ Atman,
3. Predictor phase:
"l = u" + At + (A n
ot = a4 LA
=0
Apply boundary conditions at the tim&*%~ and update coordinates
Xn—i-L =X+ ﬁn—i—L_

Continuity on the next page
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Table 1. Continuity of the step-by-step flowchart of the suggested scimetime predictor-corrector form.

4. Solve the update vector:
MnA L fixt(thrL) fznt( n+L ﬁn+L7 tn+L)
5. Corrector phase

n-‘rL A~n+L

Apply boundary conditions at the time*’.
Pullback approximation:
uplt = wp 4 (AP (e )i} + (At)* By (o )iy
Bilar) = ‘O‘L(l +3a7 — (a2)2),ﬂz(a$) = %042(( 17— 1)
6. Saveu}; '
7. Reset all variables to the state at the tithe (Do not update internal
variables).
(Second sub-step- Front-shock including integration of shear component
1. We knowu™, 0", i, 0%, and all internal variables at the tinte
2. Sett" 9 =t + At
3. Predictor phase:
S = ut + A + 1 (Arg)?an
T N N
ﬁn-i-S -0
Apply boundary conditions at the tim&+° and update coordinates
Xn+S =X + ﬁn+S_

4. Solve the update vector:

:n+S T n+S

M"Aug = £ (S — frt(ants a vt
5. Corrector phase:
n+S Au7;+s

Apply boundary conditions at the time*~.
Pullback approximation:
= w (A6 ()i + (ALR)?Ba(a
Bi(ag) = gai(1+ 3a% — (a%)?), Ba(ad) = %ag(( 87 -1)
6. Saveu; .
7. Reset all variables to the state at the tithe (Do not update internal
variables).
(Third sub-step) - Post-shock including integration with the averaging for
givend € [0, 1]

) n+S

Continuity on the next page
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Table 1. Continuity of the step-by-step flowchart of the suggested scimetime predictor-corrector form.

1. We knowu™, 0", 0", u}ljl, and all internal variables at the tinte
2. Sett" ™! =" + At
3. Predictor phase:
! =ut + Arat 4 L (A2
u”i = Hu}‘jl + (1 —g)ur!
47 =+ AT
l-;ln+1 —0
Apply boundary conditions at the tim@*! and update coordinates
Xn+1 _ X + ﬁn—i—l_
4. Solve the update vector:
MnAﬁnJrl _ fext(tn—i-l) . fint(ﬁn—i—l’ ﬁn+17 tn+1)
5. Corrector phase:
un+1 — ﬁn+1
= 6" LAmAR"
ant! = AﬁnJrl
Apply boundary conditions at the time*~,
Decomposéi™*! so thati"*! = o} ™ + ult.
6. Saveu™ !, u"!, w L @)t andit!. Update internal variables.

As we said sooner, the new suggested algorithm is a threeediap scheme. The first two
time sub-steps require the pullback integrations for eactitipned equations of motion. In that
cases, longitudinal and shear components are computedhaittiifferent time steps given by
each stability limit,At; andAts. The last time sub-step computation needs the pushforward
integration (the central difference method) with a tim@srzeAt < Aty.

The presented three-time step integrator is completeljicxwith a diagonal mass matrix
requirement, second-order accurate, conditionally stabld it shows a minimum sensitivity
behavior on the time step size. 4-noded quadrilateral andd&d hexahedral under-integrated
elements are then preferred option to model solid compeanéntmultidimensional tasks, the
proposed algorithm utilizes the component-wise partitbrequations of motion to the lon-
gitudinal and shear part. Moreover, the each component uditeans of motion is integrated
separately with each stability limit. It means with diffatdime step sizes, due the mitigating
dispersion errors and spurious oscillations. The algerittas been successful implemented
into an open research code Tahoe [13]. The detail commentglementation are mentioned
in [12].
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5 ANUMERICAL TEST — A THIN ELASTIC DISC LOADED
BY A SUDDEN RADIAL FORCE

In the benchmark test of the paper, we test accuracy andrpefze of the proposed time
integrator in elastic wave propagation in a plane domairn witrved boundaries and on an
unstructured mesh consisteddehoded linear elements. A thin elastic disc suddenly lodned
a constant normal stress is considered, for scheme seesHigure task is assumed as plane
stress state and the time history of normal stress is takéreddeaviside step function.

y

Figure 1. Problem definition of a thin elastic disc loaded by a suddetial force.

In this linear task, model parameters are chosen as noneplythe disc radiugz = 1 mm,
the amplitude of normal stress (pressurg)= 1 GPa, the angle of the applied normal stress
a = 7/60, the Young’s modulul = 8/9 GPa, the Poisson’s ratio = 1/3, and the mass
densityp = 1 mg/mn?. The material parameters were set so that corresponding syeeds
for a plane stress problem taken valugs= 1 mm/us, cs = 1/v/3 = 0.5774 mm/us and
the approximated value of Rayleigh’s wave speed on a straigimidary was given as; =
0.5369 mm/us.

Due to symmetry of the model, only an one half of the disc isrdiszed by 2160@-noded
linear elements with 21841 nodes. The nodes on the symme&yl-axis) are fixed in the
perpendicular direction to the line. The boundary of the elazh thez-axis is uniformly
approximated by 240 elements. Thus, the characteristgtheof the mesh i97 = R/120 =
1/120 = 0.00833 mm. The FE mesh was generated so that distortion of finiteexiésns the
smallest. The time step size is taken with respect to theliggdimit (5). An approximate
estimate of the stability limit of the time step size for t®del, the finite element mesh and
the material parameters was set up by few computations bgethgal difference method as
At.. = 0.7 H/cy. Thus the time step size for the proposed method is takés as0.5At., =
0.35 H/cy, = 7/2400 us. The following estimations of the critical time steps foe toroposed
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time integration are utilized a&t; = At,.. andAts = Atpcr/cs, thusa, = At/At, = 0.5
andag = At/Atg = 0.288675.

-12 1.0 08 -06 -04 -02 00 02 -12 -10 -08 06 -04 -0.2 00 02

() (b)

Figure 2: Distributions of non-dimensional stress,. /oo at the disc at the timé R/cy.: (a) the proposed method,
(b) the central difference method. A half of a disc is shown.

A response of an elastic disc to impact and moving loads hexs §tedied in [14, 15], where
the analytical derivation of dynamic stress states andlatisment distributions versus time
have been published. The numerical evaluation of stressliapthcement distributions versus
time has been presented éﬁrv in [16]. For the sake of completeness, a response of a-visc
elastic disc under sudden radial loading has been studig¥]rand dispersion of Rayleigh’s
wave in a disc has been published in [18].

As an example, numerical results of the elastic wave prdpagaroblem in the disc are
shown in Figure 2. One can see distributions of non-dimerdistressr,,. /o, at the time
4 R/c;, given by the proposed time integration method anf the ckdiifarence method. The
numerical results of the proposed method is in the full agesd with theoretically predicted
stress distributions [16]. The longitudinal and shear saveflected and Rayleigh’s waves are
generated in the disc and propagated with corresponding g@&eds. Based on the numerical
results, the proposed time integration exhibits superii@ss distributions without spurious
oscillation for irregular (unstructured) meshes agaihst ¢entral difference method. In the
central difference computation, the spurious oscillagiand dispersion effects play a significant
role and the obtained results are very polluted.

By this test, we demonstrated that accurate results of wamagation problems on unstruc-
tured meshes can be acquired by the proposed time algorTilnbe successful in computations,
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favourable estimations of the critical time steps; andAtg, are necessary to find. The main
advantage of the proposed time integration method is thetniot necessary to determine the
critical time steps exactly but only approximately.

6 CONCLUSIONS

In this paper, a step-by-step flowchart of a novel explicie¢hitime step algorithm in the
predictor-predictor form for accurate FE computationsved-t and three- dimensional wave
propagation problems has been presented. Further, thethlganitigates spurious oscillations
taking integrations of parts of equations of motion by eaebifity limits. With respect to the
presented numerical test, the algorithm exhibits stregss&ain distributions without front-
shock and post-shock spurious oscillations. Generalgy aligorithm improves results of FE
modelling of wave propagation problems in solids. The sutenitime algorithm is able to
be easily implemented into a standard finite element codewéiial material and geometrical
non-linear solid problems as dynamic plasticity or impamttact problems.
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