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Abstract. An accurate explicit integration algorithm in the predictor-corrector form for finite
element computations of wave propagation and contact problems in solids is presented. The
nominated algorithm, with the component-wise partition ofequations of motion to longitudinal
and shear parts, is designed to more precisely integrate wave propagation in accordance with
their different propagation wave speeds and their stability limits. The suggested three-time
step integrator is fully explicit with a diagonal mass matrix requirement, second-order accurate,
conditionally stable and exhibits minimal sensitivity behaviour on the time step size satisfying
the stability limit. The submitted time algorithm is able tobe easily implemented into standard
finite element codes for general non-linear dynamics problems - wave propagation, dynamic
plasticity with small and large deformations, dynamic crack propagation with cohesive fracture
models and impact/contact problems. In a numerical test of wave propagation in a disc, we
compare results obtained by the proposed scheme with existing conventional time integrators.

1 INTRODUCTION

The direct time integration is an up-to-date standard tool in finite element (FE) solution of
transient and wave propagation problems [1]. An explicit method is implemented in an each FE
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software (e.g. ABAQUS, ANSYS, LS-DYNA, PAM-CRASH, TAHOE, . . .). The contribution
deals with an explicit algorithm suitable to suppress spurious oscillations in FE computations
of linear and non-linear wave propagation problems in solids. The eliminating and diminishing
of spurious oscillations in FE simulations of discontinuous wave propagation is an up-to-date
open problem to research study.

Frequently, time integration schemes are categorized intoexplicit methods [2], implicit meth-
ods [4], and implicit-explicit methods. Essentially, the implicit method needs factorization of
an effective matrix, one or more times per step, and the method is explicit in the opposite case,
employed a diagonal (lumped) mass matrix and a vector solver[1]. As for the time integration
of discretized equations of motion, for wave propagation insolids, the central difference (CD)
method [2] is most widely and commonly used for explicit treatment in time and the New-
mark (average acceleration) method [3, 4] for implicit timeintegration. Implicit computation
needs a much larger computation effort per time step due to the solving a linear matrix system.
However, implicit methods are derived to have unconditional stability then the time step size is
chosen freely based only on the physical problem to be solved[1]. On the other hand, explicit
methods need only a vector solver, but mostly are merely conditional stable. Thus, the time step
size has to satisfy a stability limit [2].

Among explicit time integration methods, the nearly universe choice is the central difference
method which possesses no numerical dissipation for linearFE discretization with a diagonal
mass matrix. In one-dimensional case, if a linear finite element mesh is generated so that the
stability limit is the same for each element, results obtained by the central difference with the
diagonal mass matrix are very close to exact solutions. The optimal time-consuming and natural
choice of the time step size is then equal to the stability limit. For that case, spatial dispersion
errors of the linear FEM with the diagonal mass matrix [5] andperiod elongation behavior of
the central difference method [1] suppress each other, but only in one-dimensional case [6].
However, in practice, it is not feasible to employ a mesh so that the critical time step limit
is the same for all elements, thus results by the central difference method produce spurious
oscillations.

By assuming a theoretical prediction in multidimensional wave propagation in unbounded
continuum, longitudinal and shear waves propagate with different speeds,cL andcS [7]. There-
fore, the mismatch in the wave speeds of the two types of wave components produces spurious
oscillations in numerical results. In the central difference method, a single-time step compu-
tation with a time step size, which is given by the fastest propagating longitudinal wave, is
employed. Thus longitudinal waves are integrated more accurate then shear ones. This is the
main disadvantage of the central difference method using inmodelling of multidimensional
wave propagation problems in solids. For that reason, a modification of the central difference
method based on the component-wise partition of equations of motion to longitudinal and shear
parts has been found [8, 9]. In this paper, we present the predictor-corrector form of the nom-
inated explicit time scheme exploited quadrilateral and hexahedral finite elements. Moreover,
results obtained by the time scheme inhibit excellent stress and strain histories with minimum
spurious oscillations near theoretical wavefronts.
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2 FINITE ELEMENT METHOD IN SOLID DYNAMICS

Spatial discretization of a general dynamic problem by FEM introduces the second-order
ordinary differential system [10]

Mü
n = fext(t

n)− fint (u
n, u̇n, tn) , tn ∈ [t0, T ] (1)

u(t0) = u
0, u̇(t0) = v

0

whereM is the mass matrix,fext is the time-dependent external load vector,fint is the vector
of generally non-linear internal forces, the vectorsu

n, u̇n andün contain nodal displacements,
velocities and accelerations at the timetn, respectively. Quantities with the superscriptn have
a meaning of the approximation of quantities at the timetn, e.g.un ≈ u(tn) and so on. Vectors
u
0 andv0 get values of the initial state for nodal displacements and velocities at the timet0.

The discretized time is considered astn = n∆t, where∆t is the time step size. The external
loadingfext is usually a consequence of application of traction boundary conditions, body forces
or contact forces. We assume a diagonal mass matrixM.

3 THE CENTRAL DIFFERENCE METHOD

In this paper, the main attention is paid to explicit FE computations, therefore we introduce
the algorithm of the central difference method. The predictor-corrector form of the central
difference method [1] to solve a general dynamic problem with geometrical and material non-
linearities is following.
Predictor phase:

ũ
n+1

cd = u
n +∆tu̇n +

∆t2

2
ü
n

˙̃u
n+1

cd = u̇
n +

∆t

2
ü
n (2)

¨̃u
n+1

cd = 0

The system of equations of motionconstituted at the timetn+1 to solve:

M∆¨̃u
n+1

cd = f
n+1

ext − fint(ũ
n+1

cd , ˙̃u
n+1

cd , tn+1) (3)

Corrector phase:

u
n+1

cd = ũ
n+1

cd

u̇
n+1

cd = ˙̃u
n+1

cd +
∆t

2
∆¨̃u

n+1

cd (4)

ü
n+1

cd = ∆¨̃u
n+1

cd

The aforementioned process is fully explicit with a diagonal mass matrix. In addition, the
combination of the central difference method and the diagonal mass matrix of linear FEM pro-
duces a providential numerical effect due to the spatial andtemporal discretization. In this case,
dispersion errors are mutually repressed by a suitable choice of the time step size [6].
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Generally, explicit methods are only conditionally stable; the time step size∆t has to satisfy
a stability limit in the form∆t ≤ ∆tc, where∆tc is the critical time step size. The critical
time step size∆tc securing the stability of the central difference method fora linear undamped
system takes the form [11]

∆tc =
2

ωmax

(5)

whereωmax being the maximum eigenfrequency of the system, related to the generalized eigen-
value problemKu = λMu, takingω2 = λ and the stiffness matrixK of the linearized system
(1) [1].

In wave propagation problem in solids, the stability limit is approximately equal to a time
required to run longitudinal elastic wave with the speedcL through the smallest finite element
constituting a FE mesh [1]. For some element types and uniform FE meshes, the critical time
step size is estimated under elastic wave propagation rule of thumb∆tc = H/cL, whereH
is the characteristic length of the smallest element of a FE mesh. For uniform 4-nodes square
quadrilateral and 8-nodes cubic hexahedral finite elements, the stability limit is estimated as
∆tc = H/cL, whereH is the element edge [1].

4 A NOVEL TIME INTEGRATION SCHEME

In this section, the predictor-corrector form of the time scheme suggested in [9] is mentioned.
Moreover, we describe it in a step-by-step flowchart (Tab. 1), how we have to implement the
algorithm into standard finite element codes exploited quadrilateral and hexahedron linear finite
elements and a diagonal mass matrix.

In [8, 9], it has been brought about an idea a modification of the conventional central differ-
ence method being able to suppress spurious oscillations innumerical solution by lower-order
finite elements. This mentioned time integration is based oncomponent-wise partitioned equa-
tions of motion (1) to longitudinal and shear component of anapproximated displacement field
and also based on pullback time integrations [8]. The elemental component-wise partitioned
equations set have to form [9, 12]

Longitudinal component equation:Me
ü
e
L = f

e
ext,L − f

e
int,L (6)

Shear component equation:Me
ü
e
S = f

e
ext,S − f

e
int,S

where subscriptsL andS correspond to longitudinal and shear approximated displacement
fields,f eL andf eS mark decomposed forces, so thatf

e = f
e
L + f

e
S, andMe denotes the elemental

mass matrix. Practically, force decomposition is given by multiplying elemental force vectors
by decomposed matrices for a longitudinal and shear part,D

e
L andDe

S, as [9, 12]

f
e
ext,L = D

eT
L f

e
ext, f

e
int,L = D

eT
L f

e
int (7)

f
e
ext,S = D

eT
S f

e
ext, f

e
int,S = D

eT
S f

e
int

Then global vectors of external and internal decomposed forces are assembled in a standard FE
fashion to the vectorsfext andfint.
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Longitudinal and shear component-wise partitioning matrices,De
L andDe

S, possess the fol-
lowing properties [9]:

Partition of unity: D
e
S +D

e
L = I

e (8)

Projector property: D
eT
S D

e
S = D

e
S, D

eT
L D

e
L = D

e
L (9)

Symmetry: D
eT
S = D

e
S, D

eT
L = D

e
L (10)

Orthogonality: D
e
LD

e
S = D

e
SD

e
L = 0

e (11)

Element mass commutability:DeT
L M

e = M
e
D

e
L, D

eT
S M

e = M
e
D

e
S (12)

Element mass orthogonality: D
eT
L M

e
D

e
S = M

e
D

e
LD

e
S = 0

e (13)

whereIe is the unity matrix.
In Table 1, the nominated three-time step algorithm is described in details and its step-by-

step flowchart is depicted. The time scheme is applicable in afully predictor-corrector form
for a general non-linear dynamic problem. The variable timestep size∆tn is assumed to be
adopted at each time step.

Table 1: A step-by-step flowchart of the suggested scheme in the predictor-corrector form.

A. Initial calculation at the timet0

1. Initializeu0, u̇0, all internal variables from the restart and computeM
0.

2. Computef int(u0, u̇0, t0), f ext(t0), andü0 = (M0)-1(f ext − f
int).

3. Decomposëu0 so thatü0 = ü
0
L + ü

0
S

B.For each time step
〈Set required time step sizes〉
1. Estimate stability limits as∆tnL = Hn/cnL and∆tnS = Hn/cnS.
2. Set time step size∆tn = αn

L∆tnL so thatαn
L ∈ (0, 1].

3. Computeαn
L = ∆tn/∆tnL andαn

S = ∆tn/∆tnS.
〈First sub-step〉 - Front-shock including integration of longitudinal com-

ponent
1. We knowun, u̇n, ün, ün

L, and all internal variables at the timetn.
2. Settn+L = tn +∆tnL, u

n+1

fs = u
n +∆tnu̇n.

3. Predictor phase:
ũ
n+L = u

n +∆tnLu̇
n + 1

2
(∆tnL)

2
ü
n

˙̃u
n+L

= u̇
n + 1

2
∆tnLü

n

¨̃u
n+L

= 0

Apply boundary conditions at the timetn+L and update coordinates
x
n+L = X+ ũ

n+L.

Continuity on the next page
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Table 1. Continuity of the step-by-step flowchart of the suggested schemein the predictor-corrector form.

4. Solve the update vector:

M
n∆¨̃u

n+L

L = f
ext
L (tn+L)− f

int
L (ũn+L, ˜̇u

n+L
, tn+L)

5. Corrector phase:

ü
n+L
L = ∆¨̃u

n+L

L

Apply boundary conditions at the timetn+L.
Pullback approximation:
u
n+1

fs = u
n+1

fs + (∆tnL)
2β1(α

n
L)ü

n
L + (∆tnL)

2β2(α
n
L)ü

n+L
L

β1(α
n
L) =

1

6
αn
L

(

1 + 3αn
L − (αn

L)
2
)

, β2(α
n
L) =

1

6
αn
L

(

(αn
L)

2 − 1
)

6. Saveun+1

fs .
7. Reset all variables to the state at the timetn. (Do not update internal

variables).
〈Second sub-step〉 - Front-shock including integration of shear component
1. We knowun, u̇n, ün, ün

S, and all internal variables at the timetn.
2. Settn+S = tn +∆tnS.
3. Predictor phase:

ũ
n+S = u

n +∆tnSu̇
n + 1

2
(∆tnS)

2
ü
n

˙̃u
n+S

= u̇
n + 1

2
∆tnSü

n

¨̃u
n+S

= 0

Apply boundary conditions at the timetn+S and update coordinates
x
n+S = X+ ũ

n+S.
4. Solve the update vector:

M
n∆¨̃u

n+S

S = f
ext
S (tn+S)− f

int
S (ũn+S, ˜̇u

n+S
, tn+S)

5. Corrector phase:

ü
n+S
S = ∆¨̃u

n+S

S

Apply boundary conditions at the timetn+L.
Pullback approximation:
u
n+1

fs = u
n+1

fs + (∆tnS)
2β1(α

n
S)ü

n
S + (∆tnS)

2β2(α
n
S)ü

n+S
S

β1(α
n
S) =

1

6
αn
S

(

1 + 3αn
S − (αn

S)
2
)

, β2(α
n
S) =

1

6
αn
S

(

(αn
S)

2 − 1
)

6. Saveun+1

fs .
7. Reset all variables to the state at the timetn. (Do not update internal

variables).
〈Third sub-step〉 - Post-shock including integration with the averaging for

givenθ ∈ [0, 1]

Continuity on the next page
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Table 1. Continuity of the step-by-step flowchart of the suggested schemein the predictor-corrector form.

1. We knowun, u̇n, ün, un+1

fs , and all internal variables at the timetn.
2. Settn+1 = tn +∆tn1 .
3. Predictor phase:

ũ
n+1

cd = u
n +∆tnu̇n + 1

2
(∆tn)2 ün

ũ
n+1 = θun+1

fs + (1− θ)ũn+1

cd

˙̃u
n+1

= u̇
n + 1

2
∆tnün

¨̃u
n+1

= 0

Apply boundary conditions at the timetn+1 and update coordinates
x
n+1 = X+ ũ

n+1.
4. Solve the update vector:

M
n∆¨̃u

n+1

= f
ext(tn+1)− f

int(ũn+1, ˜̇u
n+1

, tn+1)
5. Corrector phase:

u
n+1 = ũ

n+1

u̇
n+1 = ˙̃u

n+1

+ 1

2
∆tn∆¨̃u

n+1

ü
n+1 = ∆¨̃u

n+1

Apply boundary conditions at the timetn+L.
Decomposëun+1 so thatün+1 = ü

n+1

L + ü
n+1

S .
6. Saveun+1, u̇n+1, ün+1, ün+1

L , andün+1

S . Update internal variables.

As we said sooner, the new suggested algorithm is a three-time step scheme. The first two
time sub-steps require the pullback integrations for each partitioned equations of motion. In that
cases, longitudinal and shear components are computed withthe different time steps given by
each stability limit,∆tL and∆tS. The last time sub-step computation needs the pushforward
integration (the central difference method) with a time step size∆t < ∆tL.

The presented three-time step integrator is completely explicit with a diagonal mass matrix
requirement, second-order accurate, conditionally stable and it shows a minimum sensitivity
behavior on the time step size. 4-noded quadrilateral and 8-noded hexahedral under-integrated
elements are then preferred option to model solid components. In multidimensional tasks, the
proposed algorithm utilizes the component-wise partitionof equations of motion to the lon-
gitudinal and shear part. Moreover, the each component of equations of motion is integrated
separately with each stability limit. It means with different time step sizes, due the mitigating
dispersion errors and spurious oscillations. The algorithm has been successful implemented
into an open research code Tahoe [13]. The detail comments toimplementation are mentioned
in [12].
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5 A NUMERICAL TEST – A THIN ELASTIC DISC LOADED
BY A SUDDEN RADIAL FORCE

In the benchmark test of the paper, we test accuracy and performance of the proposed time
integrator in elastic wave propagation in a plane domain with curved boundaries and on an
unstructured mesh consisted of4-noded linear elements. A thin elastic disc suddenly loadedby
a constant normal stress is considered, for scheme see Figure 1. The task is assumed as plane
stress state and the time history of normal stress is taken asthe Heaviside step function.

R

s

y

x
a

a

t

s
0

s

Figure 1: Problem definition of a thin elastic disc loaded by a sudden radial force.

In this linear task, model parameters are chosen as non-physical: the disc radiusR = 1 mm,
the amplitude of normal stress (pressure)σ0 = 1 GPa, the angle of the applied normal stress
α = π/60, the Young’s modulusE = 8/9 GPa, the Poisson’s ratioν = 1/3, and the mass
densityρ = 1 mg/mm3. The material parameters were set so that corresponding wave speeds
for a plane stress problem taken valuescL = 1 mm/µs, cS = 1/

√
3 = 0.5774 mm/µs and

the approximated value of Rayleigh’s wave speed on a straightboundary was given ascR =
0.5369 mm/µs.

Due to symmetry of the model, only an one half of the disc is discretized by 216004-noded
linear elements with 21841 nodes. The nodes on the symmetry line (x-axis) are fixed in the
perpendicular direction to the line. The boundary of the model on thex-axis is uniformly
approximated by 240 elements. Thus, the characteristic length of the mesh isH = R/120 =
1/120 = 0.00833 mm. The FE mesh was generated so that distortion of finite elements is the
smallest. The time step size is taken with respect to the stability limit (5). An approximate
estimate of the stability limit of the time step size for thismodel, the finite element mesh and
the material parameters was set up by few computations by thecentral difference method as
∆tcr = 0.7H/cL. Thus the time step size for the proposed method is takes as∆t = 0.5∆tcd =
0.35H/cL = 7/2400 µs. The following estimations of the critical time steps for the proposed
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time integration are utilized as∆tL = ∆tcr and∆tS = ∆tLcL/cS, thusαL = ∆t/∆tL = 0.5
andαS = ∆t/∆tS = 0.288675.

(a) (b)

Figure 2: Distributions of non-dimensional stressσxx/σ0 at the disc at the time4R/cL: (a) the proposed method,
(b) the central difference method. A half of a disc is shown.

A response of an elastic disc to impact and moving loads has been studied in [14, 15], where
the analytical derivation of dynamic stress states and displacement distributions versus time
have been published. The numerical evaluation of stress anddisplacement distributions versus
time has been presented byČerv in [16]. For the sake of completeness, a response of a visco-
elastic disc under sudden radial loading has been studied in[17] and dispersion of Rayleigh’s
wave in a disc has been published in [18].

As an example, numerical results of the elastic wave propagation problem in the disc are
shown in Figure 2. One can see distributions of non-dimensional stressσxx/σ0 at the time
4R/cL given by the proposed time integration method anf the central difference method. The
numerical results of the proposed method is in the full agreement with theoretically predicted
stress distributions [16]. The longitudinal and shear waves, reflected and Rayleigh’s waves are
generated in the disc and propagated with corresponding wave speeds. Based on the numerical
results, the proposed time integration exhibits superior stress distributions without spurious
oscillation for irregular (unstructured) meshes against the central difference method. In the
central difference computation, the spurious oscillations and dispersion effects play a significant
role and the obtained results are very polluted.

By this test, we demonstrated that accurate results of wave propagation problems on unstruc-
tured meshes can be acquired by the proposed time algorithm.To be successful in computations,
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favourable estimations of the critical time steps,∆tL and∆tS, are necessary to find. The main
advantage of the proposed time integration method is that itis not necessary to determine the
critical time steps exactly but only approximately.

6 CONCLUSIONS

In this paper, a step-by-step flowchart of a novel explicit three-time step algorithm in the
predictor-predictor form for accurate FE computations of two- and three- dimensional wave
propagation problems has been presented. Further, the algorithm mitigates spurious oscillations
taking integrations of parts of equations of motion by each stability limits. With respect to the
presented numerical test, the algorithm exhibits stress and strain distributions without front-
shock and post-shock spurious oscillations. Generally, the algorithm improves results of FE
modelling of wave propagation problems in solids. The submitted time algorithm is able to
be easily implemented into a standard finite element code of general material and geometrical
non-linear solid problems as dynamic plasticity or impact/contact problems.
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