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Abstract. Axisymmetric screech from an under-expanded contoured sonic nozzle is mod-
elled by Implicit Large Eddy Simulations (ILES). A self-sustained shear-layer instability
develops naturally, without artificial excitation, in the time-marching ILES simulation.
This reproduces some of the main flow characteristics of the A2 axisymmetric screech
mode documented in experiment. This includes a tonal pressure field, which is resolved
by the model. The axisymmetric modelling approach prevents the development of az-
imuthal structures in the jet shear-layer downstream of the potential core, which are
known to be important features for controlling jet mixing and broad-band jet noise.

1 INTRODUCTION

High-speed fighter aircraft feature low-bypass engines where the dominant noise source
is the aerodynamic jet noise, which can feature an intense tonal noise, commonly referred
to as a screech tone. The origin of screech stems from operating the jet incorrectly
expanded, whereupon a system of shock cells interacts with convected instabilities in the
jet outer shear-layer, generating noise [1].

The selection of convectively amplifying shear-layer instabilities by upstream feed-
back locks the noise generation process in a feed-back loop, which determines the tonal
characteristic of screech. From a computational viewpoint, screech therefore involves
mainly a narrow band of the kinetic energy spectrum in the jet shear layer. This makes
the problem treatable by a numerical approach that resolves directly the relevant scales
of motion associated to screech and models the effects of any under-resolved smaller-scale
dynamics on the resolved motion. Such an approach has been followed in the form of an
Implicit Large Eddy Simulation (ILES).

Jet screech can feature a combination of axisymmetric modes, commonly denoted as
A modes, and of spiral modes, or B modes, depending on the degree of incorrect expan-
sion [2]. The most acoustically active source region in an incorrectly expanded jet stretches
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from the proximity of the nozzle lip, where the high-frequency contribution mainly orig-
inates from the interaction of small amplitude shear-layer disturbances with the intense
shocks and expansion waves, to the end of the jet potential core, where the shear-layer
instabilities, which have grown to finite amplitude, interact with the weaker shock-cell
system. The shock-cell spacing close to the nozzle exit plane is mainly determined by
the inviscid compressible momentum-energy balance and is progressively affected by the
growth rate of the jet shear layer at increasing axial distances.

Incorrectly expanded jets from nozzles operating close to their design Mach numbers,
such as Mach 1 for convergent nozzles, exhibit an axisymmentric instability mode [3],
leading to an axisymmetric screech noise pattern, when screech is present. At these con-
ditions, a time-resolved simulation of the shock cells enclosed in the thin shear-layer in the
early stages of streamwise growth, close to the nozzle lip, is expected to be able to capture
the main mechanisms responsible for the generation of screech. This approach is imple-
mented by performing an axisymmetric Implicit Large Eddy Simulation of an incorrectly
expanded jet. The absence of the azimuthal degree of freedom in the computation limits
the growth of secondary, spiral mode instabilities in the shear-layer. As a consequence,
the shear-layer is expected to exhibit a reduced growth rate downstream of the end of the
potential core.

The aim of this research is to explore the use of axisymmetric Implicit Large Eddy Sim-
ulations as a lower computational cost technique, compared to three-dimensional Large
Eddy Simulations, for modelling the compressible flow dynamics of a screeching jet close to
the nozzle exit and for predicting the dominant narrow-band components of the radiating
unsteady pressure near-field.

2 FLOW CONDITIONS

Axisymmetic Implicit Large Eddy Simulations are obtained for a contoured convergent
nozzle designed for parallel flow at exit. The nozzle design exit Mach number Me is 1.0.
The simulation is designed to match the geometry and the experimental flow conditions
tested by André [4]. At the nozzle exit plane, the inner nozzle diameter is 38 mm and the
nozzle lip is 0.5 mm thick. The nozzle is supplied with unheated air at a nozzle pressure
ratio of 2.27, corresponding to a fully expanded isentropic exit Mach number Mj = 1.15.
Over a range of nozzle operating conditions, experiments found the turbulence intensity
at the nozzle exit plane to be about 2% [4]. The jet discharges in ambient quiescent air
at pressure pa = 98 kPa and temperature Ta = 288.15 K. The Reynolds number based on
the nozzle exit diameter and flow conditions is 1.2× 106. The air flow is modelled under
constant specific heat ideal gas assumptions, with the specific gas constant R = 287.058
J/(kg K) and the specific heat ratio γ = 1.4.
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3 NUMERICAL METHOD

At the selected flow conditions, the jet under-expansion develops an axisymmetric A2
screech mode [4]. Tam and Hu [5] showed that this aero-acoustic phenomenon is mainly an
inviscid process, involving the convective amplification of shear-layer instability modes,
their interaction with the shock-cell structure, and an intense tonal acoustic feed-back
through the subsonic portion of the shear-layer to the nozzle lip. The characteristic
frequency of this self-excited process is typically tonal and well defined, prompting the
adoption of a modelling approach in which this frequency and its associated large-scale
motion are resolved in space and time.

In view of the stated focus on resolving the unsteady pressure near-field, the higher-
frequency motion mainly associated to the small-scale turbulence is not resolved. A space
filtering criterion can then be introduced by which the flow governing equations, the
compressible Navier-Stokes equations, are top-hat filtered by the unit cell volume ∆ of
the computational mesh. In the filtered equations, each scalar variable f is represented
by the summation of its top hat filtered value, < f >, plus a fluctuation f ′′, so that
f =< f > +f ′′. Upon neglecting product terms involving the small-scale density and
temperature fluctuations, the resulting equations are formally identical to the Reynolds
averaged Navier-Stokes equations. In Large Eddy Simulations (LES), products of the
fluctuating quantities are modelled based on the filtered quantities, to provide turbulence
closure. In Implicit Large Eddy Simulations, the effects the fluctuating quantities have
on the filtered quantities are taken as mainly diffusive and dissipative and the numerical
dissipation and diffusion in the numerical scheme is relied upon to model such effects. By
this approach, all products of fluctuating quantities < f ′′f ′′ > in the filtered equations
are set to zero, thereby reducing the computational effort compared to a Large Eddy
Simulation.

The resulting governing equations in ILES are formally identical to the Navier-Stokes
equations. In cylindrical coordinates (x, r, θ), the axisymmetric flow governing equations
are

∂U

∂t
+

∂F

∂x
+

∂rG

r∂r
=

∂Fv

∂x
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∂rGv

r∂r
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where the vector of the conservative variables U and the inviscid (F,G) and viscous
(Fv,Gv) flux vectors are

U = (ρ, ρux, ρur, ρes)
T ,

F =
(
ρux, ρu

2
x + p, ρuxur, ρuxhs

)T
,
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(
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2
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)T
,

Fv = (0, τxx, τxr, uxτxx + urτxr + qx)
T ,

Gv = (0, τrx, τrr, uxτrx + urτrr + qr)
T , (2)

where superscript T denotes vector transpose. Equation 2 is stated in terms of space-
filtered variables normalised with respect to the nozzle exit plane conditions (ρe, ue, Te),
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where the symbol<> is omitted for conciseness, as in the remainder of this paper. Lengths
are normalised by the nozzle exit diameter De, density ρ by ρe, velocities (ux, ur) by ue,
pressure p by ρeu

2
e, specific stagnation enthalpy hs and specific stagnation energy es by

u2
e, temperature T by Te, time t by De/ue, and molecular viscosity µ by µe. The ideal gas

state equation p = ρT/ (γM2
e ) relates p, ρ, and T . The viscous stress tensor τ is
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and the heat flux vector is
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eRe
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,
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where Pr is the Prandtl number. The molecular viscosity µ is estimated by Sutherland’s
law

µ = 1.458× 10−6
(√

Te/µe

)
T 3/2/ (T − 110.4/Te) . (5)

The specific stagnation energy es and the specific stagnation enthalpy hs are given by

es = T/
[
γ (γ − 1)M2

e

]
+
(
u2
x + u2

r

)
/2, (6)

hs = es + p/ρ. (7)

The finite-volume discrete form of the flow governing equations, Eq. 1, are applied to
the jet computational domain of Fig. 1, where only the top half of the meridional plane
through the jet axis is shown for clarity. The computational domain extends 6De radially
and 20.5De axially and is discretised by a structured computational mesh. Two meshes,
shown in Fig. 2, have been produced by a bespoke in-house mesh generator, coded in
Fortran 77. The first is a uniform rectangular mesh comprising 1313× 385 nodes with a
constant square cell size (∆x,∆r) 15.625×10−3De by 15.625×10−3De on the (x, r) plane.
This mesh is shown if Fig. 2(b) where one every 6 grid lines is plotted, for clarity. Adopting
a uniform spatial discretisation in this plane has the advantage that, for axisymmetric
flows, the same spatial filter ∆ is applied consistently to the governing equations, resulting
in a uniform filtering effect with a constant cut-off wavenumber in Fourier space. The
second computational mesh has the same 1313×385 size as the uniform mesh and uses the
same uniform axial spacing ∆x. The radial spacing is non-uniform, with cells clustered
either side of the nozzle lip. The radial mesh clustering is determined by a parabolic radial
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Figure 1: Computational domain and boundary conditions.

size distribution function with the minimum ∆r = 2.63 × 10−3De located at the nozzle
lip radius. The resulting mesh is shown in Fig. 2(a), where one every 6 grid lines in x
and r is plotted, for clarity. This mesh non-uniformity in r enables a greater local spatial
resolution close to the nozzle lip, where the shear-layer is radially thin, and reduces the
computational resources required away from the jet axis, where long-wavelength acoustic
waves are expected to radiate in the ambient flow.

On the radially stretched mesh, the nozzle internal diameter De and the nozzle lip
thickness te have the same size as in experiment [4] at the nozzle exit plane. On the
uniform mesh, the nozzle internal diameter De at the nozzle exit plane matches the
experiment but the nozzle lip is thicker than in experiment.

The jet flow is characterised by compressible features, such as shocks, expansion fans,
and regions of significant flow shear. These features produce significant localised gradients
in the conservative variables. To resolve these features, a time-marching Total Variation
Diminishing (TVD) scheme is used to integrate the space-filtered flow governing equations
in finite-volume form. The inviscid fluxes at the computational cell interfaces are evaluated
using the second-order form of the Roe [6, 7] flux difference approximate Riemann solver
in the interface-normal direction. Numerical stability is provided by applying the min-
mod flux limiter. Second-order central differences are used to evaluate the viscous fluxes
at the cell interfaces.

The computation is time-marched by a two-step Runge-Kutta scheme implemented in
the low storage form of Hu et al. [8]. The standard Runge-Kutta coefficients (1.0, 0.5) are
used. A further description of this numerical integration procedure can be found in Rona
and Zhang [9].

Along the perimeter of the computational domain, boundary conditions are imposed as
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Figure 2: (a) Radially stretched computational mesh, (b) Uniform computational mesh.

shown in Fig. 1. A reflecting boundary b1 is imposed along the jet axis where Ui,−j = U∗
i,j

for j = 1 and j = 2, where r = j∆r and U∗ = (ρ, ρux − ρux∆i, ρur − ρur∆j, ρes)
T . The

open flow boundaries b2-b4 are treated by a linear extrapolation of flow state from the
computational domain interior. The solid boundaries b5-b7 are modelled by the wall
condition rUi,−j = rU∗

i,j for j = 1 and j = 2 and U−i,j = U∗
i,j for i = 1 and i = 2 for the

horizontal and vertical surfaces, respectively. At the nozzle inlet, a constant flow state
(ρe, ue, Te,Me) is imposed throughout the computation.

At the start of the computation, the computational domain outside the nozzle is primed
with the ambient zero flow conditions and the jet is impulsively started by the nozzle inlet
supersonic inflow. This abrupt start condition challenges the computational stability of
the scheme, as it generates a downstream propagating bow shock outside the nozzle. The
flow was therefore uniformly time-marched by a variable time step corresponding to a
maximum Courant number of 0.8. The variable time step is evaluated at every iteration
as the maximum non-dimensional ∆t that gives the target Courant number, based on
the local computational cell geometry and the local flow conditions. The computations
on the uniform and stretched meshes were time-marched to the non-dimensional times
t = 15.5/De and t = 3.39/De, respectively, to obtain a stationary flow, as indicated by
the static pressure monitored at x = 1.5De on the jet axis and along the nozzle lip line.
By t = 1/De, the bow shock has propagated through the downstream boundary b2 of
Fig. 1 and a jet with an organised shock-cell pattern is developed.
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During this initial transient, an axisymmetric self-sustained shear-layer instability de-
veloped in the axisymmetric flow without forcing. The jet self-selected its shear-layer
mode frequency f and Strouhal number Str = fDe/ue. Fourier analysis of the monitored
static pressure on the uniform mesh simulation indicated two spectral peaks, with the low-
est (fundamental) screech Strouhal number Str = 0.6958. The combination of the removal
of the strong bow shock by its propagation through the computational boundaries and
the stabilising effect of the viscous dissipation allowed the computation to time-advance
at larger variable time-steps, compared to when the bow shock was present, still keeping
the constant Courant number of 0.8.

After the flow has settled into a self-sustained shear-layer fluctuation flow regime,
characterised by a substantially time-invariant fundamental screech frequency, the time-
averaged flow field was obtained from the time-dependent computation as a running av-
erage of the primitive variables (ρ, ux, ur, p). On the uniform mesh, the running average
was obtained between the non-dimensional times of t = 15.5/De and t = 17.15/De, corre-
sponding to 30 periods T = 1/f of the measured screech mode frequency f = 5841 Hz [4].
Root-mean-square averages of the primitive variables were obtained alongside the mean
values. On the radially stretched mesh, a longer running average between non-dimensional
times of t = 3.39/De and t = 6.25/De was used.

4 RESULTS

4.1 Time-averaged flow predictions compared to experiment

Figure 3 shows the Mach number distribution, referenced to the local speed of sound
c, along the jet axis. The numerical prediction from the uniform mesh, shown by the con-
tinuous line, is compared with measurements by André [4], denoted by (◦). The location
and amplitude of the Prandtl-Mayer expansion fan at nozzle lip and the subsequent con-
ical shock appear to be predicted well by just using an axisymmetric ILES computation.
This is shown by the good match in axial location and value, between experiment and
prediction, of the low Mach number at the nozzle exit, the sharp first static Mach num-
ber peak, and the subsequent Mach number minimum. Further downstream, while the
spacing between subsequent Mach number maxima and minima is in broad agreement,
the amplitude of the streamwise Mach number fluctuations is lower in the predictions
compared to the experiment. This is likely to result from the axial precession of the
shock cells, due to the shear-layer motion. The movement of the shock-cells during the
running average causes shock smearing in the time-averaged flow, reducing the amplitude
of the extrema in the axial Mach number distribution. As the shear-layer motion grows
in amplitude with increasing downstream distance from the nozzle exit plane, the shock
cells further away from the nozzle exit are more affected by this shock smearing process
in the time-averaged flow, as indicated in Fig. 3. The same trend is displayed by the
time-averaged Mach number distribution predicted by the radially stretched ILES.

Table 1 shows the comparison between the shock cell lengths predicted by the ILES

7



Alessandro Mancini, Danilo Di Stefano, Edward H. Hall and Aldo Rona

x/De

M

0 2 4 6 8

1

1.1

1.2

1.3

1.4

Figure 3: Mach number distribution along the jet axis. (−) ILES uniform mesh flow prediction averaged
over 30T , (− · −) ILES radially stretched mesh prediction averaged over 50T , (◦) experiment [4].

using the uniform mesh and the ones reported in the measurements [4]. Both measure-
ments and predictions indicate a monotonic reduction in shock cell length with axial
distance. The shear layer grows in the downstream direction by entrainment of the low
speed flow that surrounds it. Axial momentum transfer to the entrained fluid from the
high-speed flow closer to the jet axis reduces the enclosed high-speed flow radius. The
boundary between the shear layer and the high-speed flow is therefore convex and the
axial velocity progressively reduces, due to the irreversible axial momentum loss through
the shocks. This results in progressively more normal compression and expansion waves,
which reduce the shock cell spacing in the axial direction. The predicted shock spacing
is in broad agreement with experiment over the first three shock cells. Figure 3 indicates
that the agreement in shock-cell length progressively decreases with increasing shock cell
number. The shear layer thickness is smaller over the first three shock cells, increasing
monotonically in the positive axial direction. As the time-averaged shear layer thickness
is determined by the diffusive and dissipative effects in the flow momentum and, in the
Implicit Large Eddy Simulation, these effects are numerical scheme dependent, further
improvements in the numerical mesh and in the limiter function are likely to improve the
current flow predictions.

Figure 4 shows the non-dimensional time-averaged density contours from the radially
stretched ILES, Fig. 4(a), and from the uniform mesh ILES, Fig. 4(b). The pattern of
alternating shock-cells close to the nozzle lip is shown in both simulations. The intensity
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Table 1: Axial length of shock cells.

Shock spacing ILES uniform mesh ILES stretched mesh Measurement [4]
L1/De 0.72 0.72 0.73
L2/De 0.73 0.69 0.68
L3/De 0.69 0.73 0.68
L̄avg/De 0.71 0.71 0.70

Figure 4: Non-dimensional time-averaged density contours. (a) radially stretched mesh ILES, (b)
uniform mesh ILES. ρmin = 0.66ρe, ρmax = 1.03ρe, ∆ρ = 0.03ρe.

of the shocks and expansions are shown to decrease with increasing axial distance from
the nozzle exit plane. The waviness of the contours furthest from the jet axis suggest that
the running average time may have been insufficient for producing a time-independent
statistically converged mean flow. This feature is more evident in Fig. 4(b), where the
mean field is estimated over the shorter non-dimensional averaging time ∆t = 1.65/De.

4.2 Time-resolved flow predictions

Time-resolved flow predictions are obtained from both the uniform mesh simulation and
from the radially stretched mesh simulation. The non-dimensional aerodynamic pressure
monitored on the jet axis in Fig. 5(a) is unsteady, displaying fluctuations that have a
rich yet narrow-band spectral content, as suggested by the presence of about 30 smooth
pressure peaks over the non-dimensional sampling time of 1.65/De. The Discrete Fourier
Transform of the digital pressure history, shown in Fig. 5(b), confirms that the near-field
aerodynamic pressure is characterised by one well-defined spectral peak. This compares to
two spectral peaks identified in experiment [4] at 5171 Hz and 5841 Hz, corresponding to
Str = 0.617 and 0.697. The dominant Strouhal number tone from the current simulation
is 0.6958. A spectrogram analysis reported by André suggests that the modes associated to
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Figure 5: Pressure at (x, r) = (1.5De, 0) from the uniform mesh ILES.

these screech frequencies alternate over time and a similar mechanism has been observed
by a similar spectrogram analysis of the numerical predictions from the uniform mesh
ILES.

Time-resolved density snapshots of the under-expanded jet are reported in Fig. 6,
covering three successive phases of the period T associated to the fundamental screech tone
identified in the pressure spectrum of each ILES simulation. In both the uniform mesh and
radially stretched mesh results, an intense shear-layer flow dynamics is predicted. This is
characterised by the roll-up of toroidal vortices downstream of the nozzle lip line that grow
in the streamwise direction as they are pushed by the core jet towards the downstream
computational domain boundary. The passage of the vortices through the shock cells
affect the position of the pressure waves that precess over time about their time-averaged
position, confirming the inference of the ’shock smearing’ effect in the time-averaged axial
Mach number distribution from Fig. 3.

5 CONCLUSIONS

Axisymmetric Implicit Large Eddy Simulations are used as a reduced cost computa-
tional model for predicting the narrow-band tonal flow dynamics of an under-expanded
jet in screech. The model restricts the resolved instability modes in the jet to axisymmet-
ric (varicose) shear-layer instabilities that interact with the shock-cell pattern, producing
large-amplitude near-field pressure fluctuations. The mainly inviscid nature of screech,
which mainly involves the shock cells in the neighbourhood of the nozzle outlet, enables
the use of such a reduced model that does not resolve the complex three-dimensional
flow mixing characterizing the jet plume further downstream. Predictions of unsteady
pressure and of time-averaged Mach number in broad qualitative agreement with the
available experimental data indicate that, within limits, the axisymmetric simulation is
a useful model for exploring the motion of the shear-layer and its interaction with the
shock-cell structure.
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(a) Incremental non-dimensional time τ = 0.0.

(b) Incremental non-dimensional time τ = T/4.

(c) Incremental non-dimensional time τ = T/2.

Figure 6: Time-resolved non-dimensional density contours of the jet at incremental non-dimensional time
(a) τ = 0.0, (b) τ = T/4, and (c) τ = T/2. (a) radially stretched mesh, (b) uniform mesh. ∆ρ = 0.05ρe.
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