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Summary. In the present work, squeeze flow between rigid platens of viscous polymer melts 

is investigated through two-dimensional finite element simulations using MSC Mentat/MSC 

Marc. The polymer under investigation is a thermoplastic processed above its melt 

temperature. The aim of the present work is to develop and validate a finite element 

modelling framework capable of simulating squeeze flow for a range of geometries and 

processing parameters. The models will be used to analyse the thickness evolution of the 

polymer film over time, as well as the shape and volume of the spew fillet; the simulation 

framework is to be validated using analytical solutions. Initial validations resulted in an 

average difference of 1% between the analytical and FEA solutions for final thickness of the 

weld polymer, with a maximum difference of 3.47%. The intention is to extend the 
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simulations to be capable of representing non-Newtonian viscosities in the fluid model due to 

variations in the processing temperature. 

 

1 INTRODUCTION 

Analyses of squeeze flows (also known as squeeze films or upsetting [1]) have been widely 

studied for over 100 years, most notably for lubrication applications (e.g. bearings). Squeeze 

flow is defined as ‘a flow in which a material is deformed between two parallel or nearly 

parallel boundaries approaching each other’ [2]. The first people to develop equations 

related to squeeze flows were Stefan and Reynolds in the late 19th century [3, 4]. Reynolds 

developed a series of assumptions and provided the basis for which squeeze flows have been 

analysed. Analytical solutions for squeeze flow are well developed in literature for both 

parallel plates [3, 5-7] and non-parallel plates [8, 9].  

The use of FEA methods for the analysis of squeeze flow has become more prevalent over 

the past 10-20 years [1, 10-16]. Research into FEA methods for the analysis of squeeze 

casting has been identified [17-19]. The analysis of squeeze flow using FEA methods has 

many advantages over the analytical methods. These include greater details in the flow 

velocity and pressure distributions and the characterisation of the free surface shape (most 

notably the spew fillet). FEA methods allow for problems with complicated three-dimensional 

(3D) geometries or complex viscosity models to be successfully modelled whilst analytical 

methods are generally restricted to simple two-dimensional (2D) geometry and Newtonian 

fluids. 

In the present work, a rigid-plastic, finite element solver implemented in MSC/Marc was 

used to model squeeze flow of viscous polymer melts between rigid platens. The intended 

applications of the modelling are to simulate the flow of weld thermoplastic during a process 

for welding composite laminates. Two-dimensional finite element analyses were conducted 

with both Newtonian and non-Newtonian viscosity models. The FEA predictions using the 

Newtonian model were compared with those obtained by analytical solutions. They were in 

excellent agreement, indicating that finite element models provide accurate solutions to the 

squeeze flow problems considered. The finite element framework developed in this study will 

allow for the analysis of more complicated and practical squeeze flow problems encountered 

in the welding process, such as problems involving complex geometry and/or non-Newtonian 

fluids, and flows between elastically deforming composite laminates in the future. 
 

2 ANALYTICAL SQUEEZE FLOW MODELS 

In deriving analytical solutions to the squeeze flow of viscous fluids, Reynolds assumed 

that: (i) gravitational and inertial terms were negligible, (ii) the fluid was Newtonian, 

isoviscous and incompressible, (iii) thickness of the squeeze film was small compared with 

the platen dimensions, (iv) there was no slip at the boundaries between the fluid and the 

platen, and v) there were no surface tension effects. 

Two geometries are commonly considered in the literature: parallel discs (axi-symmetrical 

flow) [5, 20-26] and infinite length parallel plates for which flow occurs on the plane of cross 

section (plane-strain flow) [5, 6]. Fuller begins his analysis of squeeze films by analysing 

bearing lubrication; this analysis leads to a general equation (Equation 1) for any fluid 

flowing through a slot (Figure 1). This equation forms the basis necessary for solving both the 
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axi-symmetrical flow and plane-strain flow [5]. 

 
  

     

    
 (1) 

 Where (see Figure 1): 

  – volume of flow 

   – pressure difference, from    t 

o   

  – thickness of slot 

  – width of slot 

  – viscosity 

  – length  

The derivations to obtain the solutions for parallel discs and infinite length parallel plates 

are given in Reference [5]. The equations derived are Equation 2 for axi-symmetrical flow 

and Equation 3 for plane-strain flow respectively. 
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Equation 2 and Equation 3 can be manipulated to provide the thickness evolution as a 

function of time (  ( )); see Equation 4 for the plane-strain flow case. 
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Figure 1: Flow Geometry 

3 MATERIAL MODEL 

Both Newtonian and non-Newtonian fluids were studied in this work. Rheology tests on 

the thermoplastics considered were conducted using a parallel disc, strain controlled rotation 

rheometer.  Tests were conducted at four processing temperatures, between 165°C, 175°C, 

185°C and 195°C. The viscosity vs. shear strain rate curves obtained are plotted in Figure 2, 

which indicate that the thermoplastic considered is a shear-thinning material [27].  

To use the rigid-plastic solver in MSC/Marc, flow stress rather than viscosity of a material 

needs to be input. Considering pure shear that presents in the rheology tests, Equation 4 can 

be derived to relate the flow stress to viscosity, where   ,   and  ̇ are the flow stress, viscosity 

and effective strain rate respectively. 
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       ̇ (4) 

 

In the present work, the relationship between the viscosity and shear rate as shown in 

Figure 2 was implemented into MSC/Marc using tabulated input. For shear rates below 

0.0016 Hz
1
 the viscosity is assumed to be constant, the Newtonian viscosities for each 

temperature can be seen in Table 2. 

 
Figure 2: Viscosity of Thermoplastic Polymer Melt 

4 FEA MODEL 

4.1 Elements 

The FEA analysis was conducted on MSC/Marc using its rigid-plastic solver. For the FEA 

of squeeze flows it is necessary to understand the elements that are being used and that they 

are capable of representing the material and boundary conditions that are present in the real 

world problem (necessary for both analytical and experimental validation). It was assumed 

that the polymer melt is incompressible and shows no elasticity after yield, and therefore is 

suitable to be modelled as rigid-plastic in which deformation is assumed to be plastic flow. 

Three additional parameters are necessary for the analysis of rigid-plastic flow: 1) initial 

shear rate estimate, 2) shear rate cut-off, and 3) rigid-plastic incompressibility factor. The 

initial shear rate estimate is made using a Newtonian viscosity (in the constant region of 

<0.005Hz, Figure 2) and further manipulation of Equation 4 to produce an estimation for the 

velocity of the fluid between the platens (see Equation 6 and 7). The initial shear rate 

estimated can then be entered into the model parameters. The shear thinning behaviour is 

introduced as tabulated data in the material model as previously mentioned in Section 3. 

                                                 
1
 For 175°C, below a shear rate of 0.0025 Hz the viscosity is assumed to be constant. 
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The element that has been chosen to model the squeeze flow between the two rigid platens 

is a quadrilateral, plain-strain, Herrmann formulation element which is suitable for modelling 

incompressible materials (Element 80) [28]. This element is also suitable for contact analyses 

and is capable of supporting the updated Lagrangian process which is necessary for modelling 

large strain problems. For cases in which parallel disc flow is to be modelled, a quadrilateral 

axisymmetric ring, Herrmann formulation element is suitable (Element 82) [28]. 

4.2 Geometry and boundary conditions 

The geometries modelled in the simulations for this study are generally represented by 

Figure 3 in which the critical dimensions are the half width (   , where the full width of the 

joint is definied as  ) and the initial thermoplastic thickness (  ). The infinite length parallel 

plate cases can be analysed using half of the domain, as a line of symmetry exists halfway 

along the width (included in Figure 3); this reduces the computational time necessary to 

complete the simulation. The length of the bottom platen is not of concern, as long as the 

length is sufficient enough to contain the spew fillet. 

 
Figure 3: FEA Model Geometry – Infinite Length Parallel Plates 

 
Figure 4: FEA Mesh Example (   = 250µm,     = 6.25mm) 

For the model shown in Figure 3 four boundary conditions need to be implemented for the 

successful completion of the model. The four boundary conditions are: 1) load applied to the 

top platen (simulating a constant pressure), 2) symmetric boundary condition (at the line-of-

symmetry), 3) fixed bottom platen, and 4) no-slip contact between the platens and the fluid 

domain. The first boundary condition was applied by specifying a force proportional to the 

width ( ) of the plate and by fixing the top platen from rotating. The second boundary 

condition was applied by restricting the fluid domain nodes along the line-of-symmetry in the 

x-direction. The third boundary condition was applied by fixing the bottom platen from 

displacement and rotation. The fourth boundary condition was applied by specifying the 

contact between the platen and the fluid domain as glued (in MSC Mentat/MSC Marc). The 

correct application of these boundary conditions helps lead to a computationally efficient 
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finite element model [29]. 

Also, it should be noted that the elements used in these models were a consistent size for 

all models at 50µm square (see Figure 4). For example, an initial    = 250µm and     = 

6.25mm gives a mesh density of 5 by 125 elements. 

A parametric study was completed to study the effects of different widths ( ) and welding 

temperatures; parameters modelled were: joint widths 12.5mm, 25mm, 35mm, 50mm, and 

70mm; and temperatures 165°C, 175°C, 185°C, and 195°C. The aspect ratios (AR) were 

calculated using the width and initial thickness (       ,    = 250μm) and shown in Table 

1 (these aspect ratios are calculated using the width ( ), not the half-width as seen in Figure 

3). It is important to understand the aspect ratio (the platen width in comparison to the 

polymer thickness) to ensure that Assumption (iii) in Section 2 is satisfied. It was expected 

that the higher the aspect ratio, the smaller the error between the analytical solutions and FEA 

models. The analysis time was 900 seconds (or 15 minutes) for all models with a constant 

pressure of 100kPa. 

Table 1: Aspect Ratio 

Joint Width 12.5mm 25mm 35mm 50mm 70mm 

AR 50 100 140 200 280 

 

5 RESULTS AND DISCUSSION 

The aim of this study was to build a framework in which the FEA models could be 

validated against solutions provided from analytical models. This section will present a 

summary of the results and provide a discussion on the important points. An example of the 

weld polymer flow for    = 250µm,     = 6.25mm,   = 774.8 seconds and a temperature of 

165°C can be seen in Figure 5.  

 

 
Figure 5: FEA Example of Squeeze Flow (   = 250µm,     = 6.25mm,   = 774.8 seconds,   = 165°C), Total 

Displacement in Y Direction Shown 
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5.1 -Validation of FEA against Analytical Solution 

The results of the analytical solutions provide an initial method of validation for the FEA 

models. Presented in Table 2 are the final thickness values calculated for each of the width 

and temperature combinations. 

Table 2: Final Thickness in μm (from Analytical Models) for    of 250μm, Newtonian Viscosity 

Temperature Newtonian 

Viscosity 

12.5mm 25mm 35mm 50mm 70mm 

165 23389.3 Pa.s 123.8 187.9 211.8 228.9 238.6 
175 16438.4 Pa.s 107.8 172.7 200.2 221.5 234.2 
185 12467.8 Pa.s 96.0 159.9 189.7 214.3 229.7 
195 9081.4 Pa.s 83.7 144.8 176.3 204.4 223.4 

 

As has been mentioned in Section 2, analytical solutions can be used to calculate solutions 

for the final thickness of parallel discs (as well as this, FEA solutions can be presented for 

parallel discs). Table 3 shows the resulting thicknesses for a 17mm diameter parallel disc 

flow, with an initial thickness of 250μm, under a force of 5N, for the four temperatures and 

viscosities shown in Table 2. 

Table 3: Final Thickness in μm (from Analytical Models) for    of 250μm, Newtonian Viscosity,  

Parallel Discs 

 165 175 185 195 

Viscosity 23389.3 Pa.s 16438.4 Pa.s 12467.8 Pa.s 9081.4 Pa.s 
Thickness 177.8 161.7 148.5 133.3 

 

The FEA models built in MSC Mentat/MSC Marc with a Newtonian viscosity produced 

weld polymer thickness predictions comparable to those presented in Table 2. See Table 4. 

Table 4: Final Thickness in μm (from FEA) for    of 250μm, Newtonian Fluid Material Model 

Temperature Newtonian 

Viscosity 

12.5mm 25mm 35mm 50mm 70mm 

165 23389.3 Pa.s 125.7 187.0 210.1 228.3 237.9 
175 16438.4 Pa.s 110.5 171.5 199.0 220.5 233.8 
185 12467.8 Pa.s 99.3 157.9 188.2 213.6 229.3 
195 9081.4 Pa.s 86.4 143.7 174.0 204.0 221.8 

 

As well as the FEA models produced for infinite length parallel plates, FEA models were 

built to model axisymmetric flow, using axisymmetric elements, for a comparison with Table 

3, see Table 5. 

Table 5: Final Thickness in μm (from FEA) for    of 250μm, Newtonian Fluid Material Model,  

Parallel Discs 

 165 175 185 195 

Viscosity 23389.3 Pa.s 16438.4 Pa.s 12467.8 Pa.s 9081.4 Pa.s 
Thickness 176.7 157.3 146.9 133.0 
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Comparing the final weld polymer thickness values recorded in Table 2 and Table 4 it can 

be seen that the results obtained are very similar: see Figure 6. The average difference 

between the analytical solutions and the FEA predictions is 1%, with a maximum difference 

of 3.47%. A general trend can be noticed that the greater the aspect ratio (see Table 1) the 

smaller the difference between the analytical and FEA predictions: see Figure 7. This is due to 

the assumption underlying the analytical solution for the squeeze flow of a viscous fluid, 

Assumption (iii), that the thickness of the squeeze film is small compared with the plate 

dimensions. An exact aspect ratio above this assumption is reasonable is not provided; 

however, it seems as if an aspect ratio of 100 or greater provides a difference consistently less 

than 1%. Therefore, it can be said that the FEA simulation framework has been validated. 

As well as the infinite length parallel plate situation analysed through analytical and FEA 

models, a parallel disc case has also been presented (see Table 3 and Table 5). The difference 

between the final polymer thicknesses for the analytical and FEA models for the parallel disc 

case was calculated as being approximately 1% (similar to that for the infinite length parallel 

plates). Therefore, for cases in which axisymmetric models are required to be simulated, the 

FEA framework is capable of producing accurate results. 

 

 
Figure 6: Analytical v. FEA (denoted by symbols) Thickness Evolution (t = 900sec, b = 25mm, h0 = 250um), 

Newtonian Viscosity 

It can also be seen (for the infinite length parallel plate case) that the lower the viscosity, 

the greater the difference between the analytical and FEA predictions. This may be due to 

higher inertial effects accompanying the higher flow velocity of the material out of the joint. 
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Figure 7 : Percentage Error between Analytical and FEA Solutions 

5.2 Effect of non-Newtonian material model 

A non-Newtonian fluid model was also implemented. The final thickness with a non-

Newtonian fluid is less than that predicted for a Newtonian fluid. 

Table 6: Final Thickness in μm (from FEA) for    of 250μm, non-Newtonian Fluid model 

Temperature 12.5mm 25mm 35mm 50mm 70mm 

165 101.2 162.6 194.0 220.8 235.3 
175 88.5 149.8 181.7 212.5 230.3 
185 79.3 137.8 169.7 204.2 223.5 
195 69.9 125.1 156.4 191.9 214.8 

 

The final thickness predicted for the parallel disc case, using a non-Newtonian (shear-

thinning) viscosity, can be seen in Table 7. 

Table 7: Final Thickness in μm (from FEA) for    of 250μm, non-Newtonian Fluid model, Parallel Discs 

 165 175 185 195 

Thickness 161.1 159.1 135.6 122.5 

 

It can be seen in Figure 8 (and by comparing Table 4 and Table 6, and Table 5 and Table 

7) that there is a significant difference between the final thicknesses predicted in the FEA 

simulations in which a non-Newtonian model has been implemented. 

By analysing Figure 8, it can be seen that, for all temperatures, the non-Newtonian fluid 

model leads to significant difference in the predicted final thickness. This is due to the shear-

thinning nature of the non-Newtonian fluid model. The non-Newtonian model predicts a 

smaller final thickness because for strain rates higher than 0.0016 Hz, the viscosity is lower 
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than the Newtonian fluid model, leading to greater flow. For example, in the 12.5mm wide 

fluid domain there is an average (across the four temperatures) 20% difference between the 

final thickness predicted by Newtonian and non-Newtonian models; for the 70mm wide fluid 

domain the average difference in the predictions is 2%. This is because the shear rates are 

much higher using the 12.5mm wide platen, due to the lower aspect ratio. 

 

 
Figure 8 : FEA Thickness Evolution – Newtonian Viscosity v. non-Newtonian Viscosity (denoted by symbols), 

(t = 900sec, b = 25mm, h0 = 250um) 

6 CONCLUSIONS & FUTURE WORK 

It can be seen through the approach presented in this paper that finite element analysis 

methods are capable of representing squeeze flow between infinite length parallel plates and 

parallel discs. Validation against analytical solutions has been completed using Newtonian 

representations of the polymer melt. The shear-thinning behaviour of the thermoplastic 

polymer melt has been successfully modelled in MSC Mentat/MSC Marc. A solid framework 

has been developed which can be used for more complex investigations of squeeze flow. 

In future work, the framework developed will be built upon, to be able to simulate cases 

which are not easily represented using analytical models. These models will include variations 

in temperature through the fluid domain, and complex platen geometries (including non-

parallel, concave and convex platens, etc.) Models in which the top platen is an elastic body 

allowing for deformation will also be developed. This will help in the understanding of more 

realistic welding processes. 
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