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Abstract. Based on the concept of generalized stresses proposed by Gurtin [5] and
Forest et al. [4] macro- and meso-scopic modeling approaches are considered. A ge-
neralized principle of virtual power is postulated involving generalized stresses which
are used to derive the constitutive equations for both approaches. For macroscopic
modeling we develop a multi-mechanism model for a strain rate- and temperature
dependent plastic material behavior accompanied by a Strength-Difference-effect
(SD-effect) and the trip-strain due to phase transformation. Furthermore, we extend
this model with the gradient of a phase fraction, which renders an extra degree of
freedom in the finite element formulation. For mesoscopic modeling a phase field
model is implemented for describing phase transformations. For the scenario of a
cutting process we have a martensite-austenite-martensite transformation. In the
examples we present finite element results for a cutting simulation and for a related
phase field simulation.
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1 Introduction

High speed cutting is being widely used in metal working, in which the work
piece is machined under high speed causing highly inhomogeneous strain rates and
temperature. Due to phase transformations under the intense, localized, rapid
thermal-mechanical loading, white and dark layers are induced, which determine the
mechanical properties of the workpiece. To describe the material behavior, many
macroscopic models were developed over last years. A simple model by Dudzinski
and Molinari [3] considers the shearing produced during the chip formation in
orthogonal cutting. Sievert et al. [13] consider ductile damage at high strain-rates
and the influence of the stress-triaxiality on ductile damage. Marusich and Or-
tiz [11] introduce a Lagrangian finite element model with remeshing. In addition,
more physically-based models are available, such as the Zerilli-Armstrong model
[15], which is based on simplified dislocation mechanics. Ramesh and Melkote
[12] predict the thickness of white layer taking into account the effects of stress
and strain on phase transformation temperatures, where martensitic phase trans-
formation accompanied by the transformation-induced plasticity (TRIP) effect was
considered.
Gurtin [5] formulate phase field models within a continuum thermodynamic

framework, where microforces associated with the order parameter and its first
gradient are introduced. Based on additional degrees of freedom and generalized
stresses, Forest et al. [4] describe a thermodynamic consistent phase field model,
which is extended with gradient terms. It is demonstrated, that there are strong
links between generalized continuum mechanics and phase field models which are
striving in modern field theories of materials. As a special case, the order parameter
which describes phase changes in a mesoscopic modelling can be regarded as a phase
fraction for macroscopic modelling.

Based on this theory, the multi-mechanism model of our previous work [10] can be
extended by an additional degree of freedom, the phase fraction. Furthermore, the
influence of its first gradient on the visco-plastic material behavior is an essential
aim of this work. This paper is organized as follows:

• Section 2 presents a constitutive framework for macroscopic and mesoscopic
modelling based on the concept of generalized stresses according to [4]. Using
the principle of virtual power the balance relations of the generalized stresses
are derived. Additionally the Clausius-Duhem inequality is formulated. The
evolution equations are generally formulated in accordance with the Clausius-
Planck inequality in order to obtain a thermodynamic consistent model.

• In the examples in Section 3 a cutting simulation at the macrolevel and a
phase-field simulation at the mesolevel are presented.

Notations

Square brackets [•] are used throughout the paper to denote ’function of’ in order
to distinguish from mathematical groupings with parenthesis (•).
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2 Macroscopic and mesoscopic modelling based on the concept of gen-
eralized stresses

2.1 General setting

According to Gurtin’s theory [5], there exists a scalar internal microstress π
and a vector microstress ξ. For a mesoscopic formulation, they perform work in
conjunction with changes in the configurations of atoms, characterized by a chemical
variable, the order parameter φ, and its first gradient ∇φ. For a macroscopic case,
the phase volume fraction zA is regarded as the chemical variable representing the
austenite volume fraction. Considering a non-isothermal formulation the degrees of
freedom for both cases are

1. DOFmacro = {u, θ, zA} 2. DOFmeso = {u, θ, φ}, (1)

where u is the displacement and θ the temperature. A first gradient theory is built
on

1. STRAINmacro = {ε, θ, ∇θ, zA, ∇zA}
2. STRAINmeso = {ε, θ, ∇θ, φ, ∇φ}, (2)

where ε, the total strain tensor, is the symmetric part of the displacement gradient.
According to Ammar et al. [1] the principle of virtual power for the macroscopic

case is as follows:

1. P(i)[δzA, δu, V ] =
∫
V
p(i)[δzA, δu]dv

2. P(e)[δzA, δu, V ] =
∫
V
p(e)[δzA, δu]dv

3. P(c)[δzA, δu, V ] =
∫
∂V
p(c)[δzA, δu]ds

(3)

for all subdomains D of the body V . Here P(i), P(e) and P(c) are the overall virtual
powers of internal, external and contact generalized forces, and p(i), p(e) and p(c)

are related densities, respectively. δzA and δu represent the virtual volume phase
fraction and the virtual displacement. With generalized stresses {−π, ξ,σ} and
its power-conjugates {δzA,∇δzA, ∇δu} the virtual power densities of internal and
external generalized forces are expressed as

1. p(i)[δzA, δu] = πδzA − ξ · ∇δzA − σ : ∇δu

2. p(e)[δzA, δu] = γδzA + γ · ∇δzA + f · δu.
(4)

Here σ is the Cauchy stress tensor, and f the volumetric density of force. The
external microforces are represented by the scalar γ and the vector γ as introduced
in Gurtin [5]. Furthermore, the virtual power density of generalized contact forces
reads

p(c)[δzA, δu] = ζδzA + t · δu, (5)

where ζ is the surface density of microtraction (a scalar) and t the surface density
of cohesion forces (a tensor). ζ and t are two generalized contact forces applied to
the body for the purely mechanical part over the boundary.
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Analogously to the power relations (3)-(5) for the macroscopic case the power
relations for the mesoscopic case can be formulated with the virtual order parameter
δφ instead of δzA, for brevity not shown here.

Assuming that no inertial microforces exist, under the condition of the principle
of virtual power, the virtual powers of externally and internally acting forces must
be balanced on any subdomain D ⊂ V , for any choice of the virtual phase fraction
and displacement fields:

P(i)[δzA, δu,D] + P(c)[δzA, δu,D] + P(e)[δzA, δu,D] = 0, ∀δzA, ∀δu,∀D ⊂ V. (6)

Inserting relations (3)-(5) into Eq.(6) one obtains∫
D(π +∇ · ξ + γ −∇ · γ)δzA + (∇ · σ) + f) · δu dv

+
∫
∂D(ζ − ξ · n)δzA + (t− σ · n) · δu ds = 0.

(7)

Thus, we obtain firstly the balance equation associated with phase volume fraction
zA (Eq.8.1) and boundary condition (Eq.8.2) for the generalized microtration vec-
tor, and secondly the classical local static equilibrium (Eq.8.3) and the associated
boundary condition (Eq.8.4):

1. ∇ · (ξ − γ) + π + γ = 0 in V, 2. ζ = (ξ − γ) · n on ∂V,

3. ∇ · σ + f = 0 in V, 4. t = σ · n on ∂V.
(8)

For the sake of brevity we assume γ = 0 and γ = 0. Therefore, from Eq.(8.1) we
obtain the relation

∇ · ξ + π = 0 in V. (9)

The local balance of energy and the entropy principle are given by, see e.g. Forest
et al. [4]

1. ρ ε̇+ div q = p(i) + ρ rθ in V,

2. −ρ Ψ̇ + ρ θ η̇ + p(i) − 1

θ
q · ∇θ ≥ 0. in V.

(10)

In addition to the above notations we use: ρ - density, ε-specific internal energy, q -
heat-flux density vector, rθ - mass density of heat supply. Analogously to Eq. (4.1)
we have

p(i)[żA, u̇] = −πżA + ξ · ∇żA + σ : ε̇. (11)

We also recall, that inequality (10.2) is known as the Clausius-Duhem inequality.
Finally we remark that relations (6)-(11) hold also for the mesoscopic case by

replacing the phase volume fraction zA and its virtual counterpart δzA by the order
parameter φ and its virtual counterpart δφ.
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2.2 Constitutive Framework

2.2.1 Multi-mechanism model at the macrolevel

We assume the following functional relation for the Helmholtz free energy Ψ

Ψ = Ψ[εel, q, zA,∇zA, θ], (12)

where εel is the elastic strain tensor, q = [qi, . . . , qnq ] is a vector of hardening in-
ternal variables of strain type. Next, we introduce constitutive relations for the
Cauchy stress tensor σ and the entropy η and define thermodynamic forces Q =

[Q1, Q2, . . . , Qnq ]
T

1. σ = ρ
∂Ψ

∂εel
, 2. η = −∂Ψ

∂θ
, 3. Q = ρ

∂Ψ

∂q
,

4. ZA = ρ
∂Ψ

∂zA
+ π. 5. ξ = ρ

∂Ψ

∂∇zA
.

(13)

The thermodynamic forces Qi are called hardening stresses and the quantity ZA is
named chemical force. The relations (13.1-2) result from the Clausius-Duhem in-
equality by standard arguments, see e.g. [9]. The following inequalities are sufficient
for validity of the Clausius-Duhem inequality (10.2):

1. Di = σ : ε̇in −Q q̇ − ZAżA ≥ 0, 2. Dθ = −1

θ
q · ∇θ ≥ 0. (14)

A common approach for the heat flux vector in Eq.(14.2) is the Fourier-law q =
−λθ∇θ, where λθ is a non-negative heat conduction coefficient. In a general setting
it is necessary to formulate evolution equations

1. ε̇in = ε̇in [σ, Q, ZA, q, zA,∇zA, θ], 2. q̇ = q̇ [σ, Q, ZA, q, zA,∇zA, θ],

3. żA = żA [σ, Q, ZA, q, zA,∇zA, θ],
(15)

which are in accordance with the Clausius-Planck inequality (14.1), such that the
model under consideration becomes thermodynamical consistent.

Based on the above gradient type macroscopic framework, in our new work [2] a
multi-mechanism model is developed for simulation of visco-plastic material behavior
accompanied by gradient phase transformation. To this end the classical Johnson-
Cook model is extended to take into account visco-plastic asymmetric effects and
transformation induced plasticity, for more details we refer to [10]. As a main idea,
evolution equations for the phase fractions of austenite and martensite are formu-
lated with the extended gradient term. For the case of austenitic transformation an
approach due to Leblond and Devaux [8] and for the case of retransformation the
classical Koistinen-Marburger [7] approach are used. Both approaches are extended
by the gradient of austenite phase fraction ∇zA.

2.2.2 Phase-field model at the mesolevel

The mesoscopic model is based on the phase field approach in [4]. The free energy
density Ψ is given by Ψ = Ψ[εel, V k, φ,∇φ, θ], where V k is a vector of hardening
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internal variables of strain type. Next, we define thermodynamic forces:

1. σ = ρ
∂Ψ

∂εel
, 2. η = −∂Ψ

∂θ
, 3. Ak = ρ

∂Ψ

V k

,

4. πdis = π + ρ
∂Ψ

∂φ
, 5. ξ = ρ

∂Ψ

∂∇φ
.

(16)

The thermodynamic forces Ak = [Ak1, Ak2, . . . , Akn]T are called hardening stresses
and the quantity πdis is named chemical force. The following inequalities are suffi-
cient for the validity of the Clausius-Duhem inequality

1. Di = σ : ε̇in − V kȦk − πdisφ̇ ≥ 0, 2. Dθ = −1

θ
q · ∇θ ≥ 0. (17)

As for macroscopic modelling we formulate the evolution equations ε̇in = ε̇in [εel, V k,
φ,∇φ, θ], V̇ k = V̇ k [εel, V k, φ,∇φ, θ] and φ̇ = φ̇ [εel, V k, φ,∇φ, θ], which are in accor-
dance with Clausius-Planck inequality (17), such that the model under consideration
becomes thermodynamical consistent.

3 Representative examples

In this section two numerical examples are presented.

3.1 Macroscopic modelling of cutting simulation

In the first example a cutting process is investigated in order to test the macro-
scopic model. The geometry and the finite-element discretization are shown in Figure
1. The geometry of the tool is described be a negative rake angle α = −6◦, a clear-
ance angle β = 6◦ as in the previous work [10]. The dimensions of the workpiece
(2D) are the length of 2000 µm and the height of 400 µm. The boundary conditions
on the workpiece are applied at the bottom, left side, the cutting face as well as the
right side below the cutting surface, while the tool moves in horizontal direction with
constant velocity v = 40 ms−1. The initial conditions assume room temperature,
and a conventional cooling condition is applied on the surfaces of the workpiece.

The macroscopic model is implemented as a user-defined subroutine (VUEL) on
the element level and linked to Abaqus v6.11. Large strain modelling is taken
into account by ABAQUS with an update Lagrange formulation. Based on the
parameter identification for the material DIN 100Cr6 (without the gradient term),
the macroscopic model is applied to the material behavior of the workpiece as shown
in Figure 1 (see [2] for more details). To a separation layer we assign a shear failure
criterion for separating the chip from the workpiece. The tool is modeled as purely
elastic with high elastic modulus.

The results are presented in Figure 2. a) and b) show that high stresses and tem-
peratures appear at the cutting edge, and high residual stresses at the chip top. c)
shows different stress zones indicated by the stress mode factor, which is introduced
in [10], for consideration of the asymmetric effects. Furthermore, the influence of
the gradient term for phase transformation is demonstrated. d), e) and f) show the
austenite phase fraction (the rectangle in d) visualises a representative volume ele-
ment for the next example on mesoscopic modelling), its gradient in horizontal and
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Figure 1: Cutting simulation: Geometry and finite-element discretization

vertical direction without influence of the gradient term. In comparison, g), h) and
i) are under the influence of the gradient term. The austenite phase fraction and
its gradients are clearly different because of the influence of the extended gradient
term. In the summary in Section 4 we comment on future challenges regarding the
gradient term and its identification.

3.2 Mesoscopic modelling of phase-field simulation

The second example intends to simulate the thermo-mechanic coupling in the
representative volume element in Figure 2 d). The element is firstly heated from
above and then cooled during a cutting process (see temperature illustration in
Figure 2.a). As initial condition the phase field is assigned to be martensite with a
few randomly distributed nucleuses of austenite.

Figure 3 shows the temperature (a), the martensite fraction (b), the von-Mises
stress (c) and the equivalent plastic strain (d). The phase transition is controlled
by the temperature. Martensite is a purely elastic phase whereas austenite is imple-
mented with von-Mises plasticity. The results demonstrate that the von-Mises stress
in martensite is much higher than in austenite and the equivalent plastic strain only
grows in austenite.

4 Summary and conclusions

Macroscopic modelling: Based on the concept of generalized stresses in For-
est et al. [4], we extended a macroscopic model developed in our previous work
[10] with a gradient term. This general model has been specialized and applied to a
cutting process in steel production. Furthermore, the model is applied for a cutting
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a) b) c)

d) e) f)

g) h) i)

Figure 2: Cutting simulation: Contours of a) von-Mises stress, b) temperature, c) stress mode
factor, d) and g) austenite volume fraction(the rectangle in d) visualise a representative volume
element for the next example on mesoscopic modelling), e) and h) gradient of zA in horizontal
direction, f) and i) gradient of zA in vertical direction, d), e) and f) show without, and g), h) and
i) with influence of the gradient term

simulation, and the influence of the gradient term is studied.
Concerning future works, a big challenge is the identification of the gradient term

on the basis of experiments. The studied material DIN 100Cr6 has a carbon content
from 0.93 to 1.05%, which leads to a stabilisation of austenit after the cooling in a
martensite-austenite-martensite transformation during a cutting process. The quan-
tities and space distribution of the rest austenite can be measured by using Electron
Backscatter Diffraction (EBSD). According to this aspect we intend to identify the
gradient term. Furthermore, the macroscopic model will be extended with hardness
dependency according to Umbrello et al. [14]. For incorporation of visco-plastic
asymmetry a varied strain-rate form (Huh-Kang [6]) with better description of
strain-rate dependency will be integrated in our model.

Mesoscopic modelling: Based on the same theory as the macroscopic case, the
concept of generalized stresses, a phase-field model at the mesolevel is implemented
and investigated for a phase-field simulation with mechanical coupling. A possible
extension of the phase-field model is the consideration of carbon diffusion, which is
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a) b)

c) d)

Figure 3: Phase-field modelling: a) temperature, b) martensite volume fraction, c) von-Mises
stress and d) equivalent plastic strain.

of interest for the austenitic phase transformation.
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