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Abstract. The response of rails to moving loads has been a topic of interest for over a 

century. A related issue, the critical velocity of moving loads is an important matter related to 

track design. Analytically, in undamped environment, downward as well as upward 

displacements tend to infinity when the load is moving over an infinite rail at the critical 

velocity. However, the classical formula predicts such a critical velocity significantly 

overestimated than the one experienced in reality, indicating that the formula should be 

revised. In this contribution the dynamic equilibrium of the soil in the vertical direction is 

implemented to obtain two frequency dependent parameters incorporating the geometric 

damping and the soil mass inertia activated by induced vibrations. The new approach is tested 

on finite and infinite beams. Corrections to the classical formula are proposed.  

1 INTRODUCTION 

The response of rails to moving loads is of interest in the area of high-speed railway 

transportation. If simple geometries of the track and subsoil are considered, a theoretical 

concept that is based on the assumption that the track structure acts as a continuously 

supported beam (the rail) resting on a uniform layer of springs can be adopted. This layer of 

springs represents the underlying remainder of the track structure. The stiffness of such spring 

layer along the length of the track is named as the track modulus and defines Winkler’s 

model. The Winkler model is often referred to as a “one-parameter model”. Such a simplified 

model is traditionally used to estimate the critical velocity of moving trains.  

The critical velocity of the load vcr is defined as the phase velocity of the slowest free 

wave, but, in reality, this velocity should be compared to the Rayleigh-wave velocity of the 

ground [1] and therefore it is strange that the mass of the foundation is not accounted for in 

the classical formula.  

2 TRACK STIFFNESS VERSUS TRACK MODULUS 

The track is often characterized by two parameters: track stiffness, K, and track modulus, k. 

The track stiffness is defined as: 



Z. Dimitrovová 

 2 

 
st

P
K

w
  (1) 

where P is the wheel load and wst is the static deflection of the rail. Some realistic values 

based on experimental tests are presented in Table 1. 
 

Table 1: Realistic values of the track stiffeness 

Type K (MN/m) 

Soft platform 5-25 

Clay platform 15-20 

Platform with gravel 20-60 

Rock platform 30-40 

Ballast and hard platform 80-160 

 

The track modulus is related to the track stiffness by: 

 
 

4/3

1/3
64

K
k

EI
  (2) 

based on the value of the static displacement of an infinite beam on an elastic foundation 

subjected to a static force P: 

 4

2 4
st

P k
w

k EI
  (3) 

where EI  stands for the beam bending stiffness. Thus the track modulus defines the Winkler 

constant of the one-parameter foundation model. Regarding the previous values in Table 1 

and standard rail characteristics, the track modulus range from 1MN/m
2
 to 117MN/m

2
. Values 

documented in the literature cover even larger interval from 0.22MN/m
2
 to 1000MN/m

2
.  

3 CRITICAL VELOCITY 

The critical velocity of the load traversing an infinite Euler-Bernoulli beam on an elastic 

foundation is given by: 

 4
2

4E B

cr

kEI
v

m

   (4) 

where E-B designates that Euler-Bernoulli theory is used and m stands for the beam mass per 

unit length. For a typical standard rail, EI=6.4MNm
2
, m=60kg/m and the lowest value of the 

track modulus introduced in the previous section, k=0.22MN/m
2
, the critical velocity is above 

700km/h, which is not what has been observed in reality.  

Formula (4) is closely related to a finite beam. Following [2, 3], the resonant velocity of a 

finite beam corresponds to the velocity for which the excitation frequency of the passing load 

equals to the corresponding beam natural frequency, thus: 
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 res j

j

L
v 


  (5) 

where L  is the beam length, /j L  is the wave number and j  is the corresponding natural 

frequency. Such a resonant velocity can be attributed to each vibration mode. The critical 

velocity is the lowest resonant velocity. For a beam without an elastic foundation 1crj   is 

always verified. When an elastic foundation is included, then one can consider the previous 

equation as function of j  and establish the extreme value. For an Euler-Bernoulli beam it 

holds  

 

4

r

E B r
j

r

jL EI k
v

j L



  

  
  

 
 (6) 

and the minimum value is achieved for a non-integer jcr: 

 4
cr

L k
j

EI
  (7) 

Substituting jcr back into Equation (6), Equation (4) is verified, as expected. Thus, the closest 

integer to jcr indicates the critical velocity of the load passing over the finite Euler-Bernoulli 

beam. This value always overestimates the value related to the infinite beam. The main reason 

for incorrectness in the critical velocity predictions is the absence of the inertia effects of the 

foundation and no definition of the active foundation depth. 

4 GENERALIZATIONS 

Several studies were performed over the years in order to generalize Equation (4).  

4.1 Beam level 

By nullity condition imposed on the determinant of the dynamic stiffness matrix, for 

instance the value for the Timoshenko-Rayleigh beam can be obtained as [2]: 

 

 
     2 2 2 4 2

2
2

1
2 2T R

crv k EI kr GA r GA GA kGA kr GA EI kr GA
kr GA

      


(8) 

where r and GA  stand for the radius of gyration of the beam cross-section and for the shear 

stiffness of the beam, respectively, A  is the reduced (by Timoshenko’s shear coefficient) 

cross-sectional area. 

4.2 Soil level 

Improvements of Winkler’s model were obtained by introduction of another parameter in 

so-called Filonenko–Borodich, Pasternak or Hetenyi models (1954). This parameter can be 

explained as a shear contribution and thus removes the disadvantage of Winkler’s springs that 

do not interact between themselves. It can equally be understood as a distributed rotational 

springs. This representation is easier to implement when finite element confirmation of 
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theoretical developments is required. The model is named as a “two-parameter model”. Other 

generalization is presented by Kerr (1965) as a “three-parameter model”. Also the Vlasov 

model (1966) is named as a “three-parameter model”, but the third parameter has different 

meaning as in the Kerr model. The Vlasov model improves the foundation model by 

introduction of the so called active depth of the soil.  It is assumed that the deflection w  

varies inside the soil layer according to a function  f z  and      , , , , ,w x y z t w x y t f z , 

where  , ,w x y t  equals the deflection of the beam/soil contact point, , ,x y z  are spatial 

coordinates and t  is the time. Then  f z  must verify  0 1f   and   0f H  , where H  is 

the active depth.  f z  can be expressed with the help of another parameter   as: 

  




sinh

1sinh 


















H

z

zf  (9) 

In the original development the parameter   is arbitrary. A refinement of the Vlasov 

model is named as the “modified (refined) Vlasov model” (1988) introduced by Vallabhan 

and Das [4]. One of the possibilities of   determination establishes a relation:  
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12

21




 (10) 

as this relation involves the still unknown vertical displacement w , an interactive procedure 

must be introduced in the solution. This model is named as the modified Vlasov model [4]. In 

Equation (10)   is the Poisson ration and   is gradient operator.  

 

Figure 1: Dependence of function  f z on parameter   
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The soil mass is added by a term assuming a linear distribution of function  f z  directly in 

the mass matrix of the structure. Analysing relation (9) it can be concluded that the only 

viable shapes of the function  f z  are contained within the region restricted by the linear 

distribution, as shown in Figure 1. 

The two soil parameters are given by: 

 
 2

20

sinh coshd

d 2sinh

oed
H

oed f E
k E dz

z H

   



 
  

 
  (11) 

 
 2

20

sinh cosh

2 sinh

H

pk Gf dz GH
  

 


   (12) 

where the oedometer modulus is 
     1 / 1 1 2oedE E      

 and E  and G stand for the 

Young and shear modulus of the soil, respectively. For linear distribution of function  f z , 

i.e. 0   the previous parameters are given by 

 

oedE
k

H


, 3
p

GH
k 

 (13) 

5 DYNAMIC STIFFNESS  

5.1 Generally 

More correctly than by an additional term in the mass matrix, the mass inertia of the soil 

would be inserted directly in the soil moduli. Then the two soil parameters of the Pasternak 

model should be considered as frequency dependent,  k   and  pk  . This will also remove 

the need of determination of an additional parameter  . Function  f z  can be derived from 

the dynamic equilibrium of the soil in the vertical direction. Following [5]:  
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yzxzz






















 (14) 

where   and   stand for normal and tangential stress components, respectively. The 

components of the deformation tensor are given by: 

  
 
z

zf
tyxwz
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d
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tyxw
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




,,
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y
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




,,
  (15) 

where ε and γ stand for the extension and engineering distortion, respectively. Therefore, the 

stress components can be expressed as: 

  
 
z

zf
tyxwEoed

z
d

d
,, , 

 
 zf

x

tyxw
Gxz






,,
 , 

 
 zf

y

tyxw
Gyz






,,
  (16) 

Assuming harmonic vibrations and neglecting the shear stress derivatives, the differential 

equation for the function  f z  reads as: 
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     0
d

d 2

2

2

 zfzf
z

  (17) 

where the wave number   is given by:  

 4

2

oed

p Ev


   (18) 

and pv  is the velocity of the pressure waves. The solution of Equation (17) is: 

  
  sin

cos cotg sin
sin

H z
f z z H z

H


  




    (19) 

The total energy (both potential and kinetic) of the soil can be expressed as: 
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

 (20) 

If a sufficiently extensive area Ω is selected, the energy beyond this region can be 

neglected. In this formulation, the energy attributed to the Pasternak modulus in fact 

corresponds to the energy of distributed rotational springs. It follows: 

    
H

H
H

H

E
dzf
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





 
  HH

HHH
GHdzGfk

H

p





20

2

sin

cossin

2

1
 (22) 

and the vertical stress (the reaction pressure of the soil) at the contact is given by: 

      
2 2

2 2s p

w w
p k w k

x y
  

  
   
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 (23) 

If H  tends to zero, static values of the Winkler and Pasternak parameters are verified as 

in Equation (13).  

In summary, the effect of the viscoelastic foundation can be represented by the soil 

pressure, which for beam structures takes the following form: 

      
2

2s p

w
p k w k

x
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
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
 (24) 
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5.2 Simply supported finite beam 

In order to derive the new formula for the critical velocity, a finite beam on a frequency 

dependent foundation will be considered first. The governing equation of undamped free 

vibrations of the Euler-Bernoulli beam on a Pasternak foundation is given by [6]: 

    
24 2

4 2 2
0n

p

ww w
EI m k k w

x t x
 

 
   

  
 (25) 

and the wave equation is: 

    4 2 2 0pEIp k p k        (26) 

Considering a practical example, let the following values as specified in Table 2 be 

adopted.  

Table 2: Numerical data in a practical example. 

Property Values 

Beam bending stiffness EI  (MNm
2
) 6.4 

Beam mass per unit length m (kg/m) 60 

Soil Young’s modulus E  (MPa) 200 

Soil Poisson’s ratio   0 

Soil density ρ (kg/m
3
) 2000 

Beam length L  (m) 200 

Active depth H  (m) 12 

 

Because of the simple supports, the only beam deflection shape that verifies the boundary 

conditions is given by: 

   sinj

j
w x x

L

 
  

 
 (27) 

thus /p j L  and natural frequencies can be determined. When the Pasternak 

contribution is omitted, there are infinite natural frequencies for a fixed j  that have 

consecutive shapes of function  f z . It can be concluded that the second soil mode 

frequency related to the fundamental beam mode shape will never be lower than any 

frequency of the first soil mode.  

The first five soil modes related to the fundamental beam mode shape are presented in 

Figure 2. The contact condition  

 
 
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d

oed

z

f z
k E

z


   (28) 

is verified for the Winkler’s term. Surprisingly this condition is not verified by the Vlasov 

model.  
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Figure 2: First five soil modes of the Winkler beam 

Orthogonality conditions can be defined by: 
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 (30) 

where b   and b is the soil strip width. Then the modal mass is given by: 
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   (31) 

and the modal coordinate by a standard relation: 
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
  (32) 

Then it is possible to determine the resonant velocities by standard procedures and 

consequently the new value of the critical velocity: 

 4
2

4E B st
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k EI
v



   (33) 

where  

 bH    ,   2
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but a good approximation can be obtained with 0.5  . The change from subcritical to 

supercritical velocity is shown in Figure 3 and 4 for undamped and damped with 0.03   

cases. 

 

Figure 3: Deflection of 400m length finite beam for several velocities around the critical one  

 

Figure 4: Deflection of 400m length finite beam with 3% damping for several velocities around the critical one 

If the Pasternak contribution is included, there are cases where the mode shapes do not 

represent a viable solution. This might be due to several simplifying assumptions along the 

determination of the wave equation. 

5.3 Infinite beam 

Regarding an infinite beam, Equation (25) can be represented in a moving coordinate 

system, now a damping term is included and the Pasternak term is omitted: 

    
4 2
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4 2

w w w
EI mv cv k w P x

x x x
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, 

2 2
2

2 2st

w w
k H v

z x


 


 
 (35) 
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By introduction of dimensionless characteristics 
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it is obtained 
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after Fourier transformation the solution is given by: 
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There is infinite number of poles, and therefore a numerical solution by direct Fourier 

transform is presented in [7]. Nevertheless, it can be proven that the sum of all solution terms 

can be expressed analytically. It holds: 

 
8

3
f   (39) 

The final deflection shape can must be transformed from the complex space to the real one 

by: 

       
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 (40) 

 

Figure 5: Deflection of an infinite beam for velocity of 49m/s 



Z. Dimitrovová 

 11 

In Figure 5 deflection shapes are shown for 8.6   and different approaches to express the 

damping term, namely 0.2b  , 0.2f   and 0.03  . 

6 CONCLUSIONS  

In this contribution the disadvantages of the standard formula for the critical velocity 

determination were summarized. The new approach that can improve the formula was 

introduced. This approach account for the mass inertia of the soil, directly by introduction of 

frequency dependent soil foundation parameters. Solution in an analytical form is presented 

for finite and infinite beams, critical velocity is determined and enhanced formula for the 

critical velocity is presented. 
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