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Abstract. Classically, the elastic behaviour of cardiac tissue mechanics is modelled
using anisotropic strain energy functions capturing the averaged behaviour of its fibrous
microstructure. The strain energy function can be derived via representation theorems
for anisotropic functions where a suitable nonlinear strain tensor, e.g. the Green strain
tensor, describes locally the current state of strain. These kinds of approaches, however,
are usually of phenomenological nature and do not elucidate on the complex heteroge-
neous material composition of cardiac tissue characterized by different fibre hierarchies
interwoven by collagen, elastin and coronary capillaries. Thus, pathological changes of
microstructural constituents, e.g. with regards to the extra-cellular matrix, and their
implications on the macroscopically observable material behaviour cannot be directly in-
vestigated.

This paper follows a hypothesis by Hussan et al. [24], stipulating that the semisoft
behaviour of myocardial tissue stems from the ability of cardiac myocytes to deform while
being embedded and constrained by the cross-linked collagen matrix. Here, the fibrous
characteristics of the myocardium are modelled by one-dimensional Cosserat continua.
This additionally allows for the inclusion of fibre motion relative to matrix representing
the non-local material response due to twisting and bending of fibres.

1 INTRODUCTION

Cardiovascular disease is the single leading cause of death in the world accounting
for 30% of all human mortality [2]. Despite the recent advancements of pharmaceutical,
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surgical, device and tissue engineered therapy strategies, cardiovascular disease remains
one of the most costly, common and deadly medical conditions. Despite current worldwide
efforts to treat cardiovascular disease, projections show an increase in predicted mortality?,
keeping cardiovascular disease as the leading cause of death globally [28, 2]. Historically,
clinical treatments for cardiovascular disease have been developed primarily by trial and
error as opposed to a comprehensive understanding of the structural and mechanical
changes that a diseased heart undergoes. Recent advancements in numerical methods
and the proliferation of inexpensive high performance computing power has enabled more
sophisticated simulation tools that could allow for greater insight into cardiovascular
disease and guide the development of modern therapies.

Cardiovascular tissue is a complex heterogeneous material with a significant hierar-
chical micro structure that influences the material on a macro scale. [17, 33, 22, 36].
Mathematically this is classified as a non-linear, hyperelastic material with orthotropic
properties arising from the micro-structure influence of the myocyte fibres.

The need to place a larger emphasis on the micro structure is expressed heavily in
the literature [38, 21, 18]. Specifically over the last 15 years, models have introduced
phenomenological properties as a means to overcome the complex structure on a macro
and micro scale. Increasing attempts to include the micro structural influences have
emerged with the hope to better capture the complex material response by placing a
larger influence on the multi-scale physics underlying the behaviour. [37] introduced a
one of the first multi-scale models, by including cellular considerations for calculating
the global active tension during contraction. [24] includes micro mechanical contributions
from the myocytes (and their perimysial collagen mesh), modelling them as cylinders with
mechanical degrees of freedom corresponding to twist, bend and splay. In the mechanical
modelling of hard biological tissue, various micro continuum approaches have also been
investigated [40, 30, 1, 9]. However soft biological tissue remains to be significantly under
investigated with respect to micro continuum theories.

This research intends to adopt the work of [[Sansour2008 and extend its application
to soft biological tissue. The fibrous cardiac tissue will be mathematically represented
through the inclusion of one dimensional Cosserat rods in the formulation of the mate-
rial’s kinematics and constitutive laws. The successful inclusion of generalized continua
approaches, including Cosserat models, in the application to other hard biological tis-
sue, i.e bone [30, 1, 17, 33], has proved successful in capturing more realistic material
responses.

Investigation into the higher order contributions from the one dimensional rods will be
analysed in application to small cardiac specimens and left ventricular representations.

'Reliable projections up until 2030.
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2 METHOD

We decompose the strain energy in contributions related to fibrous structural com-
ponents, e.g. bundles of myocytes embedded in perimysial collagen, modelled by one-
dimensional Cosserat continua and complementary connective tissue. In the Cosserat con-
tinuum every material point P is assigned besides displacement additional rotational de-
grees of freedom described by a rotation tensor R € SO(3) which is independent of the de-
formation gradient F. This allows for the formulation of two strain measures, a stretch-like
strain tensor U = RTF and a change of curvature strain tensor K = —%(—: :(RTR;) @V,
where the index ¢ = f,¢,n and V¢, V,,V,, span an orthonormal basis describing fibre,
sheet-tangent and sheet-normal directions, respectively.

A Fung-type orthotropic strain energy function ¢ (U, K) incorporating fibrous and com-
plementary matrix material components is defined as follows:

1
b=A (exp”? —1) + Acomp (J InJ — J + 1) (1)

with J denoting the Jacobian and the exponent Q) = Q fitre + Qmatriz given by

N
Qe = a1 Ufy +ay (Ufp + Uy +Usp) + {aé’) Kjp + a’ (KszerKtszrKZf)(})
Qmatric = b (UE+U2) +by (Ui, + UL+ U2 +U; + U +U2, (3)
f f

considering the heterogeneous responses of N different hierarchical fibre entities and the
associated material parameters A, B, Aqomp, a1, a2, aéz), agf), b1 and b,.
Finally, a corresponding variational principle is formulated as

/{n:éU—i—m:éK}dV—Wemt:O (4)
B

0 0
with the force stress tensor n = _?/1 and the couple stress tensor m = —Id; The latter

incorporates the heterogeneous responses of all considered fibrous constituents.

3 RESULTS
Calibration

Considering in Eq. (3) only one fibrous constituent, i.e. bundles of myocytes interwo-
ven by perimysial collagen, and assuming equal elasticity moduli for first and higher-order
strains, respectively, i.e. a3 = ao, ay = ay, then the proposed transverse isotropic tissue
model in Eq. (1) has four material anisotropy parameters ay, ag, by and be; two stress scal-
ing parameters A and Ay, relating to compressible and incompressible contributions,
respectively; an exponential scaling parameter B; and the characteristic length [ which is
a feature of the micro structure.
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The availability of experimental data suitable for the calibration of cardiac tissue is
limited. The most comprehensive study investigating orthotropy was performed by [13]
in which cubic sections cut from a porcine left ventricle were subject to shear loads. The
experiment was performed to include all six combinations of fibre orientation and shear
deformation as illustrated in Figure 1. In case of other animals, one can utilize a common
assumption that one mammalian specific cardiac material behaves in a similar manner to
other mammalian cardiac tissue [14]. Based on this assumption, the material anisotropy
parameters (I, a1, az, by and by) are directly calibrated using the shear experiments. To
complete the material parameter calibration, a secondary calibration is employed to obtain
the remaining “scaling” parameters to fit animal specific models using experimental data,
e.g. ventricular pressure-volume curves or cavity surface deformation data, pertaining
directly to the animal in question. In this sense the scaling parameters A and B are
considered specific material parameters for a given species. The other material parameters
l, a1, as, by and by are considered universal cardiac tissue parameters that govern the
anisotropy and include a feature of the micro structure, these remain unchanged from

species to species.
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Figure 1: Sketches of six possible modes of shear for orthotropic myocardium defined with respect to
the fibre axis f, sheet-tangent axis ¢ and sheet-normal axis n.

For the special case of calibrating transverse isotropy, we recognise that the total
combinations of fibre orientation and shear deformation reduces to three possible cases as
put forward in Figure 2.
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Figure 2: Sketches of the three possible modes of shear for transverse isotropic myocardium: (a) A
transverse plane shifted towards the fibre direction, (b) a transverse plane shifted towards the other
transverse plane and lastly (c) the fibre plane shifted towards a transverse plane.

The specimen cubes used in the shear experiments of [13], had a natural variation in
the fibre orientation. The cube dimensions were 3mm x 3mm x 3mm, extracted from
the midwall of the left ventricle and rejected if there was a change in fibre orientation
amounting to more than 30° across the cube. In order to represent this in our shear
experiments, and following the work of [24], we specify a mean fibre orientation in our cube
and allow for that orientation to vary. The variation of the fibre orientation is considered
a smooth function of one transverse direction. This results in the fibre direction on one
side of the cube orientated +15° from the mean direction and —15° on the opposite side.

The varying fibre orientation is a necessary requirement in order to calibrate for the
characteristic length [, as it introduces torsional and flexural strain in the deformation of
the cube.

In order to calibrate the transverse isotropic case we are forced to combine the original
data sets into the relevant three cases outlined in Figure 2. The combined data sets were
constructed by fitting an exponential function to pairs of data using MATLAB’s built in
curve fitting algorithm. The data sets were equally weighted using the least root mean
square fit produced the resulting “midline” data set.

The computational reproduction of the experiments are designed to reproduce the ex-
perimental design in [13] as accurately as possible. Using the same specified dimensions
(3mm x 3mm x 3mm) each cube is fixed at the bottom with respect to all displacements,
while the top surface experiences shear displacements amounting to 50% of the cube’s
length. The top and bottom surface were glued to plates, in the shearing device used by
Dokos, and as such while shearing the top surface, the displacements in the remaining
directions remain fixed. Additionally, we impose appropriate rotational boundary condi-
tions on the top and bottom surface, resulting in all rotations being constrained along the
top and bottom surface.

Research done in the Computational Continuum Mechanics Group, UCT, established
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an optimization scheme based on the Bounded Levenberg-Marquardt algorithm or BLVM
[27]. For a detailed account of the optimization and corresponding implementation one
is directed to [15]. Material parameter identification is found via minimization of a cost
function, expressing the difference between experimental data points and corresponding
simulation results. Initial material parameters choices need to specified, including con-
straints on the reasonable parameter choices. For the calibration of the nonlinear Cosserat
fibre model, the optimization algorithm was applied separately to the three cases outlined
in Figure 2. This forced the authors to perform multiple rounds of calibration to identify
suitable parameters. After the first iteration of calibration, any consistent results across
the three experiments was taken as a successfully calibrated parameters and was fixed, or
tightly constrained, for the successive rounds of calibration. All parameters were subject
to calibration through the optimization routine, except for B and Ay, which were both
set to 1.00. It would be redundant to calibrate for B in such a problem and simple shear
is volume preserving and as such Ao, plays no role. [ is calibrated to achieve the lowest
possible residual in the optimization routine.

Calibration results

The Cosserat fibre model is able to reproduce the experimental results for porcine
myocardium relatively well. The resulting fitted model, plotted alongside the data sets
used are shown in Figure 3. The fitted parameters are presented in the Table 1.

Table 1: Material properties for nonlinear Cosserat constitutive law, fitted to [13] shear experimental
data for porcine cardiac tissue.

Parameter Symbol  Value
Principle fibre modulus ax 52.380
Shear fibre modulus Qo 28.090
Principle matrix modulus b, 18.112
Shear matrix modulus ba 16.480
Characteristic length l 0.6622
Stress Scaling 1 A 0.10
Stress Scaling 2 B 1.00
Incompressibility Acomp 1.00
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Figure 3: Material response of calibrated nonlinear Cosserat fibre model (dashed lines) alongside the
combined data sets from [13]. (a) The fibre plane shifted towards a transverse plane, (b) a transverse
plane shifted towards the fibre direction and lastly, (c) a transverse plane shifted towards the other
transverse plane.

In Figure 4, the calibrated Cosserat fibre model result is presented alongside the case
where higher order strains are excluded (i.e [ = 0.0) for the shear experiment of a cube
extending the plane normal to the fibre in the transverse direction. The case where
[ = 0.0 includes only first order strains in its constitutive description and as such is more
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compliant. One could recalibrate the model to coincide more closely with the experimental
data, but in this sense one would be placing a larger dependence on local features, i.e that
the stress at the material point is solely governed by first order strains. The Cosserat fibre
continuum theory, accounts for the influence of relative motion of neighbouring material
points resulting in torsional and flexural strains, i.e. introducing higher-order strains.
These are the change of curvature strains along the fibre. These contributions, scaled
by [, provide a direct and meaningful way of including the underlying micro-structural
kinematics and more accurately representing the material.
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Figure 4: Material response of calibrated nonlinear Cosserat fibre model alongside the classical case for
the same material parameters.

4 CONCLUSIONS

In summary, the proposed approach is motivated by the microstructural kinematics
of myocytes and bundles of myocytes interacting with the collagen enmeshment. It de-
scribes the passive material behaviour of cardiac tissue through the Cosserat fibre contin-
uum. The defining feature of the model, the characteristic length [, controls the influence
of higher-order strains arising from relative motion of the micro-structural constituents.
Consequently, pathological changes of the latter and their impact on micro-mechanical
properties can be specifically addressed in a more detailed fashion.

It is demonstrated that the proposed nonlinear transversely isotropic constitutive law
based on the Cosserat fibre continuum is able to closely reproduce the shear experimental
data of [13]. In particular, the influence of fibre orientation and variation across the tissue
specimen gives rise to higher-order micro-structural deformation such as twist and flexure
which can be directly accounted for by the change of curvature strains which are a key
feature of the Cosserat continuum.
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